目录

1 概述..1
 1.1 项目由来..1
 1.2 项目特点..1
 1.3 关注的主要环境问题..2

2 总则...3
 2.1 评价目的和原则..3
 2.1.1 评价目的..3
 2.1.2 评价原则..3
 2.2 编制依据...3
 2.2.1 环境保护法规...3
 2.2.2 技术规范及文件...4
 2.2.3 与项目有关的文件和资料..5
 2.3 评价标准...5
 2.3.1 环境质量..5
 2.3.2 排放标准..8
 2.4 评价等级..9
 2.4.1 地表水环境...9
 2.4.2 地下水...9
 2.4.3 大气环境..10
 2.4.4 声环境..10
 2.4.5 生态环境..11
 2.4.6 土壤环境..11
 2.5 评价范围...12
 2.5.1 评价因子..12
 2.5.2 评价重点..12
 2.6 控制污染与保护环境目标..13
绵阳市餐厨废弃物资源化利用和无害化处理项目扩建100t/d生产线项目

环境影响报告书

2.6.1 控制污染目标...13
2.6.2 外环境关系及保护环境目标..13
2.7 项目建设与国家产业政策和当地规划的符合性..15
 2.7.1 与国家产业政策的符合性..15
 2.7.2 选址合理性分析..15
 2.7.3 “三线一单”符合性分析..17
2.8 评价工作程序..18
3 现有项目工程分析...21
 3.1 现有工程概况..21
 3.2 现有工程项目组成..21
 3.3 总平面布置...22
 3.4 设备情况..22
 3.5 产品方案..24
 3.6 现有工程水平衡...24
 3.7 现有项目工艺流程..26
 3.8 现有工程污染治理及污染物排放情况..31
4 扩建项目工程分析...38
 4.1 扩建项目概况..38
 4.2 扩建项目组成..38
 4.3 扩建项目总平面布置...40
 4.4 扩建项目工艺流程及产污环节分析..41
 4.5 扩建项目主要原辅材料..57
 4.7 扩建项目污染物产生、治理和排放情况...59
 4.7.1 物料平衡..59
 4.7.2 污染源分析...61
 4.7.2.1 废气污染源分析..61
 4.7.2.2 废水污染源分析..65
 4.10.3 噪声污染源强确定..68
 4.10.4 固体废物...68
项目区域环境概况

5.1 自然环境概况

5.1.1 地理位置

5.1.2 地形地貌

5.1.3 气候气象

5.1.4 水文

5.1.5 生物多样性

5.1.6 矿产资源

绵阳市第二生活垃圾填埋场概况

6 环境质量现状评价

6.1 环境空气质量现状监测

6.2 地表水环境质量现状

6.3 噪声环境质量现状监测

6.4 地下水环境质量现状监测

6.5 污染源调查

7 环境影响预测与评价

7.1 施工期环境影响分析

7.2 大气环境影响预测与评价

7.3 地表水环境影响分析

7.4 地下水环境影响分析

7.5 固体废物环境影响分析

7.6 噪声环境影响分析

7.7 环境风险分析

7.8 环境经济损益分析

7.9 环境影响评价结论
7.4 声环境影响分析

7.4.1 噪声源情况

7.4.2 声环境影响预测

7.5 地下水环境影响分析

7.5.1 非正常工况地下水污染因素

7.5.2 场地水文地质条件

7.5.3 地下水类型及富水性

7.5.4 地下水补、径、排条件

7.5.5 地下水动态特征

7.5.6 地下水环境影响预测与评价

7.6 土壤环境影响分析

7.7 固体废物环境影响分析

7.7.1 固体废物产生及处置情况

7.7.2 运输过程中环境影响分析

7.8 环境风险影响分析

7.8.1 风险评价等级和范围

7.8.2 环境敏感目标概况

7.8.3 环境风险识别

7.8.4 事故影响分析

7.8.5 环境风险防范措施

7.8.6 环境风险投资估算

7.8.7 环境风险评价

7.9 餐厨垃圾运输的影响及措施建议

8 环境保护措施及其可行性论证

8.1 废气污染防治措施及其可行性论证

8.1.1 恶臭废气治理措施

8.1.2 排气筒设置合理性

8.2 地下水污染防治措施及其可行性论证

8.2.1 污染源控制措施
8.2.2 地下水防治分区

8.2.3 地下水污染防治措施

8.2.4 地下水污染应急预案、应急处置及管理

8.3 噪声污染防治措施及其可行性论证

8.4 固体废物污染防治措施及其可行性论证

8.5 废水污染防治措施及其可行性论证

8.5.1 废水污染源分析

8.5.2 拟采取的防治措施

8.5.3 垃圾填埋场渗滤液处理站渗滤液处理措施论证

8.6 餐厨垃圾收运过程污染防治措施

8.7 绿化

8.8 环保投资一览表

9 环境经济损益分析

9.1 环境保护投资效益分析

9.1.1 项目“三同时”治理设施、投资及运行费用估算

9.1.2 项目环境保护投资效益分析

9.2 经济效益分析

9.3 社会效益、环境效益分析

9.4 经济费用效益评价

9.5 环境影响经济效益分析

10 环境管理和检测计划

10.1 环境管理机构设置

10.2 环境管理职责

10.3 环境管理计划

10.4 环境监测计划及内容

10.5 污染物排放清单及总量指标

10.5.1 污染物排放清单

10.5.2 总量控制因子及指标

10.6 “三本账”分析
11 结论.. 155

11.1 环境影响评价结论.. 155

11.1.1 项目建设与产业政策的符合性... 155

11.1.2 项目选址与当地规划的符合性... 155

11.1.3 与“三线一单”控制要求的相符性分析.. 156

11.1.3 工程所在区域环境质量现状... 156

11.1.4 工程污染物排放治理及环境影响.. 157

11.1.5 清洁生产.. 159

11.2 总结论.. 159

11.3 建议... 159
附图
附图 1 项目地理位置图
附图 2 水文地质图
附图 3 项目外环境关系图
附图 4 项目总平面布置图
附图 5 项目分区防渗图
附图 6 四川省生态保护红线分布图

附件
附件 1 环境影响评价工作委托书
附件 2 四川省固定资产投资项目备案表
附件 3 沼气项目备案表
附件 4 绵阳中科绵投环境服务有限公司选址规划意见表
附件 5 本项目环评执行标准的函
附件 6 本项目环境现状监测报告

附表
附表 1：建设项目大气环境影响评价自查表
附表 2：建设项目地表水环境影响评价自查表
附表 3：环境风险评价自查表
附表 4：土壤环境影响评价自查表
附表 5：建设项目环评审批基础信息表
1 概述

1.1 项目由来

随着绵阳市经济社会快速发展、城市化进程加快以及城市人口的不断增长，城市固体废弃物的产生量越来越大，其对环境的压力也越来越突出。绵阳市市委、市政府非常重视固体废弃物的处理处置问题，在生活垃圾无害化处理、工业废物的综合利用、危险废物的管理等方面开展了卓有成效的工作。

根据绵阳市餐厨废弃物资源化利用和无害化处理一期项目收运情况，2020年绵阳市中心城区的餐厨垃圾日产量已超过200吨；如此大量的餐厨垃圾如果没有进行无害化处理，将成为绵阳市资源节约型环境友好型社会、发展循环经济的重要阻碍之一。绵阳市餐厨废弃物资源化利用和无害化处理二期项目建设迫在眉睫，项目建成后可完全实现对服务区域内的餐厨垃圾进行无害化处理和资源化再利用。

本项目餐厨垃圾来源为绵阳市城市规划区（2010-2020）范围内的餐厨废弃物。

1.2 项目特点

本项目属于扩建项目，扩建工程在现有厂区预留场地完成。

1）项目以餐厨垃圾为原料，从事粗油脂生产，并将厌氧发酵产生的沼气进行提纯为生物天然气进行销售（已完成沼气项目备案，备案号川投资备【2020-510703-45-03-441202】FGQB-0041号），属于“餐厨废弃物资源化利用技术开发及设施建设”，属于《产业结构调整指导目录（2019年本）》中鼓励类项目。

2）扩建项目新增一条日处理100吨餐厨垃圾的生产线，增加厌氧发酵罐及其他基础设施、布置设备的车间及环保措施均依托现有项目。

3）本次项目采用的处理工艺为“预处理+油水分离+厌氧发酵”，扩建项目除臭新增碱洗设备和光催化氧化除臭设备。
1.3 关注的主要环境问题

本次评价主要关注的环境问题是建设项目建成营运后项目生产对周边环境的影响以及发生的可预测突发性事件或事故（一般不包括人为破坏及自然灾害）引起有毒有害、易燃易爆等物质泄漏，或突发事件产生新的有毒有害物质，所造成的对人身安全与环境的影响。本项目关注的主要环境问题为:

（1）建设项目所在地周围的环境质量现状;
（2）本项目生产过程中恶臭对大气环境的影响;
（3）项目产生的固渣、废液、废油脂、沼气的储存和去向问题;
（4）本项目可能存在的环境风险。
（5）需重点关注项目建成后的各项环境管理措施，包括:企业监测能力、监测计划落实情况;企业涉及有毒有害物质的管理情况等。
2 总则

2.1 评价目的和原则

2.1.1 评价目的

环境影响评价作为建设项目管理的一项制度，其基本目的是贯彻“保护环境”这一基本国策。本次环评的根本出发点在于从环境保护的角度出发，本着“以防为主、防治结合、清洁生产、总量控制、达标排放”的原则，在对本项目进行深入调查分析的基础上，查清项目所在区域环境现状和容量以及存在的主要环境问题，分析建设项目对当地环境可能造成的不良影响，弄清影响程度和范围，核实“三废”的产生量及排放情况，提出总量控制计划，分析本工程拟采取的环保措施对各项污染物的排放削减情况及削减量，分析其有效性、可靠性和合理性和可操作性，论述和分析本项目实施的可行性，评价项目实施对环境和社会的影响，提出合理化建议，为项目实现合理布局、最佳设计提供科学依据。

根据评价的目的和对建设项目的工程分析，结合相关环评导则和技术规范，确定在本次评价中主要采用分析法、类比法和计算法，按“突出重点”的原则，针对工程建设内容的不同特点，各有侧重地进行评价。

2.1.2 评价原则

1. 符合国家产业政策的原则；
2. 符合城市环境功能区划和城市总体发展规划的原则；
3. 符合清洁生产要求的原则；
4. 污染物达标排放的原则；
5. 满足国家和地方规定的污染物总量控制的原则；
6. 符合环境功能区要求，改善或维持区域环境质量的原则。

2.2 编制依据

2.2.1 环境保护法规

（1）《中华人民共和国环境保护法》，1989年12月26日第七届全国人民代表大会常务委员会第十六次会议通过，2014年4月24日第十二届全国人民代
表大会常务委员会第八次会议修订，2015年1月1日施行；
（2）《中华人民共和国环境影响评价法》，2018年12月29日修订并实施；
（3）《中华人民共和国固体废物污染环境防治法》，2020年4月29日修订，自2020年9月1日起施行
（4）《中华人民共和国大气污染防治法》，2018年10月26日修订并实施；
（5）《中华人民共和国水污染防治法》，2017年6月27日修订，2018年1月1日实施；
（6）《中华人民共和国环境噪声污染防治法》，2018年12月29日修订；
（7）《中华人民共和国水法》，（2016年修订），中华人民共和国主席令第四十八号，2016年7月2日修订通过；
（8）《中华人民共和国清洁生产促进法》，国家主席令第54号，2012年2月29日通过，2012年7月1日施行；
（9）《建设项目环境保护管理条例》，国务院令第682号，2017年6月21日通过，2017年10月1日施行；
（10）《大气污染防治行动计划》，国发[2013]37号；
（11）《四川省<中华人民共和国大气污染防治法>实施办法》（2002.9.1实施）；
（12）《四川省灰霾天气污染防治实施方案》（川环发[2013]78号）。

2.2.2 技术规范及文件
（1）《环境影响评价技术导则 总纲》（HJ 2.1－2016）；
（2）《环境影响评价技术导则 大气环境》（HJ 2.2－2018）；
（3）《环境影响评价技术导则 地下水环境》（HJ 610－2016）；
（4）《环境影响评价技术导则 声环境》（HJ 2.4－2009）；
（5）《建设项目环境风险评价技术导则》（HJ 169－2018）；
（6）《环境影响评价技术导则 地表水环境》（HJ 2.3－2018）；
（7）《环境影响评价技术导则 生态影响》（HJ 19－2011）；
（8）《危险废物填埋污染控制标准》（GB18598－2001）（2013年修订）；
（9）《餐厨垃圾处理技术规范》（CJJ 184-2012）。
2.2.3 与项目有关的文件和资料

（1）国务院办公厅《关于加强地沟油整治和餐厨废弃物管理的意见》（国办发〔2010〕36号）；

（2）国务院《关于进一步加强城市生活垃圾处理工作意见的通知》（国发[2011]9号）；

（3）《关于组织推荐第二批餐厨废弃物资源化利用和无害化处理试点备选城市的通知》，四川省发展和改革委员会、四川省住房和城乡建设厅、四川省财政厅、四川省环境保护厅、四川省农业农村厅，2012.03.29；

（4）发改办环资【2014】1905号文《关于同意浙江省衢州市等17个城市为第四批餐厨废弃物资源化利用和无害化处理试点城市的通知》

（5）绵府办发【2018】28号《绵阳市人民政府办公室关于印发绵阳市餐厨废弃物管理办法的通知》

（6）环境现状监测报告

（7）项目委托书

（8）《绵阳市餐厨废弃物资源化利用和无害化处理二期项目可行性研究报告》

（9）建设单位提供的相关基础资料；

（10）当地社会、经济、环境、水文、气象资料等；

2.3 评价标准

本次评价执行标准由绵阳市生态环境局下达，具体内容如下:

2.3.1 环境质量

（1）地表水环境

本项目区域涉及地表水水体为巩家沟，巩家沟流经9.7km进入庞家堰，再流经21.3km进入涪江。

评价河段执行GB3838-2002中Ⅲ类水域标准。评价因子和标准限值见表2-1。

<table>
<thead>
<tr>
<th>项目</th>
<th>Ⅲ类水域标准</th>
</tr>
</thead>
</table>

表2-1 地表水水质评价标准（GB3838-2002）Ⅲ类 单位：mg/L
绵阳市餐厨废弃物资源化利用和无害化处理项目扩建100t/d生产线项目

环境影响报告书

<table>
<thead>
<tr>
<th>pH</th>
<th>6~9</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>≤20</td>
</tr>
<tr>
<td>BOD5</td>
<td>≤4</td>
</tr>
<tr>
<td>DO</td>
<td>≥5</td>
</tr>
<tr>
<td>挥发酚</td>
<td>≤0.005</td>
</tr>
<tr>
<td>氨氮</td>
<td>≤1.0</td>
</tr>
<tr>
<td>总磷</td>
<td>≤0.2</td>
</tr>
<tr>
<td>Cd</td>
<td>≤0.005</td>
</tr>
<tr>
<td>pb</td>
<td>≤0.05</td>
</tr>
<tr>
<td>Hg</td>
<td>≤0.0001</td>
</tr>
<tr>
<td>石油类</td>
<td>≤0.05</td>
</tr>
<tr>
<td>粪大肠菌群(个/L)</td>
<td>≤10000</td>
</tr>
<tr>
<td>氯化物</td>
<td>≤250</td>
</tr>
</tbody>
</table>

上述标准中，pH 无量纲，其余因子单位为 mg/L。

（2）地下水

地下水水质执行国家《地下水质量标准》（GB/T14848-2017）中Ⅲ类，评价因子和标准限值见下表 2-2。

表 2-2 地下水水质评价标准（GB/T14848-93）Ⅲ类

<table>
<thead>
<tr>
<th>项目</th>
<th>pH</th>
<th>Cd</th>
<th>NH₃-N</th>
<th>高锰酸盐指数</th>
<th>Pb</th>
<th>Hg</th>
<th>总大肠菌群</th>
<th>色 (度)</th>
<th>氯化物</th>
<th>Fe</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>标准值</td>
<td>6.5~8.5</td>
<td>≤0.005</td>
<td>≤0.5</td>
<td>≤3.0</td>
<td>≤0.01</td>
<td>≤0.001</td>
<td>≤3.0</td>
<td>≤15</td>
<td>≤250</td>
<td>≤0.3</td>
<td>≤0.1</td>
</tr>
<tr>
<td>备注</td>
<td>pH 无量纲；总大肠菌群（个/L）；色（度）。</td>
<td></td>
</tr>
</tbody>
</table>

（3）环境空气

项目所在区域环境空气质量执行《环境空气质量标准》（GB3095-2012）中的二级标准，在该标准中未列出的 H₂S、NH₃，参照《工业企业设计卫生标准（TJ36-79）》“居住区大气中有害物质的最高允许浓度”，标准限值见下表 2-3。

表 2-3 环境空气评价标准

<table>
<thead>
<tr>
<th>项目</th>
<th>SO₂</th>
<th>NOx</th>
<th>NO₂</th>
<th>PM₁₀</th>
<th>PM₂.₅</th>
<th>Pb</th>
<th>H₂S</th>
<th>NH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 小时平均（一次）</td>
<td>0.500</td>
<td>0.250</td>
<td>0.200</td>
<td>0.150</td>
<td>0.075</td>
<td></td>
<td>0.01</td>
<td>0.2</td>
</tr>
<tr>
<td>24 小时平均</td>
<td>0.150</td>
<td>0.100</td>
<td>0.080</td>
<td>0.150</td>
<td></td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>季平均</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>年平均</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>标准编号及级别</td>
<td>GB3095-2012 中二级</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 最高允许浓度 | | | | | | TJ36-79 中

6
（4）声环境

施工期噪声执行《建筑施工场界环境噪声排放标准》（GB 12523－2011）中的相关标准，见表；营运期环境噪声执行《声环境质量标准》（GB3096-2008）中的2类标准，具体指标见表2-4、2-5。

表 2-4 建筑施工场界环境噪声排放限值（GB 12523－2011）

<table>
<thead>
<tr>
<th>噪声限值（dB(A)）</th>
<th>昼间</th>
<th>夜间</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

表 2-5 环境噪声评价标准（GB3096-2008）

<table>
<thead>
<tr>
<th>标准类别</th>
<th>等效声级 L_{Aeq}(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2类</td>
<td>昼间 60</td>
</tr>
</tbody>
</table>

（5）土壤

土壤执行《土壤环境质量标准》（GB36600-2018）中第二类用地标准，具体见表2-6。

表 2-6 土壤环境质量标准

<table>
<thead>
<tr>
<th>项目</th>
<th>镉</th>
<th>汞</th>
<th>砷</th>
<th>铜</th>
<th>铅</th>
<th>铬（六价）</th>
<th>镍</th>
</tr>
</thead>
<tbody>
<tr>
<td>筛选值</td>
<td>65</td>
<td>38</td>
<td>60</td>
<td>18000</td>
<td>800</td>
<td>5.7</td>
<td>900</td>
</tr>
<tr>
<td>管制值</td>
<td>172</td>
<td>82</td>
<td>140</td>
<td>36000</td>
<td>2500</td>
<td>78</td>
<td>2000</td>
</tr>
</tbody>
</table>

（6）生态环境

水土流失以不改变现状土壤侵蚀类型为标准，其中土壤侵蚀类型划分标准见下表。动植物以不减少区域内濒危珍稀动植物为标准，具体标准见表 2-7。

表 2-7 土壤侵蚀类型划分标准

<table>
<thead>
<tr>
<th>类型</th>
<th>级 别</th>
<th>侵蚀模数（t/km²·a）</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>微度侵蚀（无明显侵蚀）</td>
<td>＜1000</td>
</tr>
<tr>
<td>II</td>
<td>轻度侵蚀</td>
<td>1000~2500</td>
</tr>
<tr>
<td>III</td>
<td>中度侵蚀</td>
<td>2500~5000</td>
</tr>
<tr>
<td>IV</td>
<td>强度侵蚀</td>
<td>5000~8000</td>
</tr>
<tr>
<td>V</td>
<td>极强度侵蚀</td>
<td>8000~15000</td>
</tr>
</tbody>
</table>
2.3.2 排放标准

（1）水污染物

本项目产生的废水经垃圾填埋场渗滤液处理站处处理，处理后的废水执行《生活垃圾填埋场污染控制标准》（GB16889-2008）中表2标准，具体指标见下表2-8。

表2-8 生活垃圾填埋污染控制标准（GB16889-2008）

<table>
<thead>
<tr>
<th>序号</th>
<th>控制污染物</th>
<th>排放浓度限值</th>
<th>污染物排放监控位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>色度（稀释倍数）</td>
<td>40</td>
<td>常规污水处理设施排放口</td>
</tr>
<tr>
<td>2</td>
<td>COD（mg/l）</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BOD₅（mg/l）</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SS（mg/l）</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>总氮（mg/l）</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NH₃-N（mg/l）</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>总磷（mg/l）</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>粪大肠菌群数（个/L）</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>总汞（mg/l）</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>总镉（mg/l）</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>总铬（mg/l）</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>六价铬（mg/l）</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>总砷（mg/l）</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>总铅（mg/l）</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

（2）大气污染物

项目废气来源于预处理系统、卸料大厅、污泥脱水车间产生的恶臭。恶臭污染物排放应执行《恶臭污染物排放标准》（GB14554-93）中二级标准，具体指标见下表2-9。

表2-9 恶臭污染物厂界标准（GB14554-93）

<table>
<thead>
<tr>
<th>序号</th>
<th>控制项目</th>
<th>单位</th>
<th>标准限值</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>氨</td>
<td>mg/m³</td>
<td>1.5</td>
<td>二级标准（新扩改建）</td>
</tr>
<tr>
<td>5</td>
<td>臭气浓度</td>
<td>无量纲</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

（3）噪声

项目场界噪声应执行《工业企业厂界环境噪声排放标准》（GB12348-2008）
2. 类。具体指标见下表 2-10。

| 表 2-10 厂界噪声执行标准 (GB12348-2008) |
|------------------|--|--|
| 标准类别 | 等效声级 L_{Aeq}(dB) |
| 2 类 | 昼间 60 | 夜间 50 |

（4）固体废弃物

项目产生的固体废物主要为预处理系统产生的分选废渣、废脱硫剂等。执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001/XG1-2013) 规定的相应标准。

2.4 评价等级

2.4.1 地表水环境

本工程的沼液及冲洗废水送垃圾填埋场渗滤液处理站处理，废水处理达《生活垃圾填埋场污染控制标准》(GB16889-2008) 中表 2 标准后排入下游坝家沟，根据《环境影响评价技术导则——地表水环境》(HJ2.3-2018) 中评价等级的划分（见下表），本项目属于水污染影响型建设项目，废水产生量为 194.77m3/d，排往垃圾填埋场渗滤液处理站处理后排放，属于直接排放，其中根据计算，COD 当量数最大为 2320，废水年排放 COD2.32t/a，其当量值为 1，根据地表水工作等级分级表判断，对工程废水评价级别确定为三级 A，重点对项目废水处理措施的可行性进行分析，工作等级表见表 2-11。

| 表 2-11 地表水工作等级分级表 |
|------------------|--|--|
| 评价等级 | 判定依据 | 废水排放量 Q/(m3/d)
	排放方式	污染物当量数 W/（无量纲）
一级	直接排放	Q≥20000 或 W≥60000
二级	直接排放	其他
三级 A	直接排放	Q<200 且 W<600
三级 B	间接排放	其他

2.4.2 地下水

根据《环境影响评价技术导则——地下水环境》(HJ610-2016)，该项目属于地下水环境影响评价分类表的 149，生活垃圾（含餐厨废弃物）的集中处
属于Ⅱ类建设项目地下水环境影响评价工作等级的划分要求。该项目所属地区无集中式饮用水源地区、无热水、矿泉水以及其他敏感地区，项目所属地区地下水环境敏感程度为不敏感，根据《环境影响评价技术导则 地下水环境》（HJ610-2016）中表二评价工作等级分级表，确定本项目地下水评价等级为三级，地下水工作等级分级表见表2-12。

<table>
<thead>
<tr>
<th>环境敏感程度</th>
<th>I类项目</th>
<th>Ⅱ类项目</th>
<th>Ⅲ类项目</th>
</tr>
</thead>
<tbody>
<tr>
<td>敏感</td>
<td>一</td>
<td>一</td>
<td>二</td>
</tr>
<tr>
<td>较敏感</td>
<td>一</td>
<td>二</td>
<td>三</td>
</tr>
<tr>
<td>不敏感</td>
<td>二</td>
<td>三</td>
<td>三</td>
</tr>
</tbody>
</table>

2.4.3 大气环境

按照《环境影响评价技术导则——大气环境》（HJ2.2-2018）的规定，对项目的影响工程分析，选择其大气污染物中的主要污染因子，分别计算最大地面浓度占标率。根据导则推荐的公式进行计算，将污染物最大地面浓度占标率作为确定评价级别的依据。计算公式如下：

\[P_i = \frac{C_i}{C_{oi}} \times 100\% \]

式中：\(P_i \)——第 \(i \) 个污染物的最大地面浓度占标率，\%;

\(C_i \)——采用估算模式计算出的第 \(i \) 个污染物的最大地面浓度，mg/m³;

\(C_{oi} \)——第 \(i \) 个污染物的环境空气质量标准。

根据工程烟气排放源强、最大地面浓度及其占标率计算，其中 NH₃ 和 H₂S 的 1%≤P_{max} 值≤10%，根据《环境影响评价技术导则大气环境》（HJ2.2—2018），本次大气环境评价等级确定为二级。

2.4.4 声环境

项目拟建地为现绵阳市生活垃圾填埋场红线范围内（绵阳市涪城区玉皇镇堡梁村八社），周围为农村环境，项目周边 500m 范围内无农户居住，无其它特殊环境敏感点，所在区域为《声环境质量标准》（GB3096-2008）中划定的 2 类区。根据分析，工程营运噪声影响主要为预处理设备和各类泵、风机等产生的动
力机械噪声以及运输车辆等产生的综合性噪声，设备噪声源强在75~90dB(A)之间，按照环境影响评价技术导则“建设项目所处的声环境功能区为GB3096规定的1类、2类地区，或建设项目建设前后评价范围内敏感目标噪声级增高量达3dB(A)~5dB(A)(含5dB(A))，或受噪声影响人口数量增加较多时，按二级评价”，本工程的声环境影响评价工作等级为二级。

2.4.5 生态环境

本项目拟建地现绵阳市生活垃圾填埋场红线范围内（绵阳市涪城区玉皇镇堡梁村八社），总占地面积约20亩，处于郊区农村，附近区域无自然保护区及其它需要特殊保护的环境目标，项目建设对当地生物量、物种多样性、绿地面积等方面的影响不明显，对土壤、地表水的理化性质改变亦不明显。工程占地范围<2km²，根据《环境影响评价技术导则——生态影响》（HJ19-2011）判断，本项目生态环境评价等级为三级，生态影响评价等级表见下表2-13。

<table>
<thead>
<tr>
<th>表2-13 生态影响评价工作等级表</th>
</tr>
</thead>
<tbody>
<tr>
<td>影响区域生态敏感性</td>
</tr>
<tr>
<td>面积≥20km²或长度≥100km</td>
</tr>
<tr>
<td>特殊生态敏感区</td>
</tr>
<tr>
<td>重要生态敏感区</td>
</tr>
<tr>
<td>一般区域</td>
</tr>
</tbody>
</table>

2.4.6 土壤环境

本项目属于“餐厨废弃物资源化利用技术开发及设施建设”，按照《环境影响评价技术导则——土壤环境（试行）》（HJ964-2018），本项目属于Ⅲ类项目“一般工业固体废物处置及综合利用（除采取焚烧和填埋方式以外的）；废旧资源加工，再生利用”，占地14230m²（≤5hm²）为小型占地，项目周边无学校、居民区等敏感点，敏感程度为不敏感，根据《环境影响评价技术导则——土壤环境（试行）》（HJ964-2018），本项目可不开展土壤环境影响评价工作，土壤评价等级表见下表2-14。

<table>
<thead>
<tr>
<th>表2-14 土壤污染影响型评价工作等级划分表</th>
</tr>
</thead>
<tbody>
<tr>
<td>评价工作等级</td>
</tr>
<tr>
<td>敏感</td>
</tr>
</tbody>
</table>
2.5 评价范围

由于项目属于二期建设，在原本项目内建设，施工期仅为设备安装，运营期评价范围见下表 2-15。

<table>
<thead>
<tr>
<th>环境要素</th>
<th>评 价 范 围</th>
</tr>
</thead>
<tbody>
<tr>
<td>水环境</td>
<td></td>
</tr>
<tr>
<td>地表水</td>
<td>巩家沟：项目排口上游 200m，下游 3000m；庞家堰：巩家沟汇入口上游 500m 至下游 2000m。</td>
</tr>
<tr>
<td>地下水</td>
<td>建设项目及周边区域地下水环境，评价区面积 6km²。</td>
</tr>
<tr>
<td>环境空气</td>
<td>环境空气：以恶臭气体排气筒为中心周围 5×5km²距离内区域；</td>
</tr>
<tr>
<td>声环境</td>
<td>厂界外 200m 范围内。</td>
</tr>
<tr>
<td>生态环境</td>
<td>厂址边界外 1km 范围内的区域。</td>
</tr>
</tbody>
</table>

2.5.1 评价因子

项目评价因子选取详见下表 2-16。

<table>
<thead>
<tr>
<th>项目</th>
<th>现状评价因子</th>
<th>影响评价（分析）因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>大气</td>
<td>SO₂、NO₂、氨氧化物、PM₁₀、H₂S、NH₃、臭气浓度</td>
<td>H₂S、NH₃</td>
</tr>
<tr>
<td>地表水</td>
<td>pH 值，化学需氧量，五日生化需氧量，溶解氧，氨氮，石油类，挥发酚，总磷，氟化物，铅，镉，砷，汞，六价铬，粪大肠菌群</td>
<td>/</td>
</tr>
<tr>
<td>地下水</td>
<td>pH 值，氨氮，硝酸盐，亚硝酸盐，挥发性酚类，氯化物，总硬度，溶解性总固体，高锰酸盐指数，氟化物，铅，镉，铁，铜，锰，砷，六价铬，汞，钾，钠，钙，镁，硫酸盐，硫化物，氯化物，细菌总数，总大肠菌群</td>
<td>COD、氨氮</td>
</tr>
<tr>
<td>声环境</td>
<td>等效声级 Ld(A)和 Ln(A)</td>
<td></td>
</tr>
<tr>
<td>生态</td>
<td>水土流失、植被、土地资源、生态恢复等</td>
<td></td>
</tr>
<tr>
<td>固体废物</td>
<td>预处理废渣、沼渣、废脱硫剂等。</td>
<td></td>
</tr>
</tbody>
</table>

2.5.2 评价重点

根据拟建工程特征与工程所在地的环境特点，以及工程环境影响因子识别等综合分析，确定评价工作重点为：

1、项目选址的合理性分析；

2、在深入进行工程分析及污染防治对策分析基础上，分析和预测恶臭气体...
对周围大气环境的影响、恶臭防治措施及其技术经济论证；

3. 分析和评价项目生产废水处理工艺的经济、技术可行性及外排废水对区域地表水、地下水环境的影响；

4. 分析项目产生的固体废物对环境的影响。

2.6 控制污染与保护环境目标

2.6.1 控制污染目标

（1）控制本项目恶臭气体达标排放；保护区域空气环境质量在二级标准之内；

（2）控制本项目废水得到有效处置达标排放，不改变受纳地表水水域功能；

（3）根据工程与环境特点，制定环境风险防范措施及防范应急预案，尽可能杜绝环境污染事故发生；

（4）确保项目满足“以防为主、防治结合、总量控制、清洁生产、达标排放”的要求，区域环境质量不下降；

2.6.2 外环境关系及保护环境目标

本项目选址位于现绵阳市生活垃圾填埋场红线范围内（绵阳市涪城区玉皇镇坚堡梁村八社），垃圾场填埋区中部建有一座东西向的分隔坝，坝北侧为垃圾填埋区，南侧北部为垃圾焚烧项目建设用地，南侧南部为本项目用地。

经对项目周边环境情况及住户分布情况进行踏勘，项目周边场镇及住户分布如下：

厂址东面 1000m 为坚保梁村 6、9 社农户（约 60 户）、2600m 为老君村 5 社农户（约 50 户）；东北面 600~1400m 为坚保梁村 6、9 社农户（约 78 户）、1550m 为高山寺村农户（约 80 户）、2000m 为老君村 8 社农户（约 20 户）；北面 1000~1150m 为高山寺村农户（约 70 户）；西北面 1100~1300m 为爱民村农户（约 85 户）；西面 1800m 为爱民村散居农户（约 15 户）；西南面 710m 为玉皇镇场镇边界，该场镇内有镇政府、学校、卫生院等，约有住户 1800 人、910m 为致旺食品厂（手工泡菜作坊）、2100m 为斑竹村 3 组农户（约 30 户）；南面 690m 为坚保梁村 3 社散居农户（约 35 户）、1300~2000m 为草堂村农户（约 90 户）；东南面 690m 为坚保梁村 6 社散居农户（约 15 户）、1300~2600m 为任家村 3 社
农户（约103户）。

本项目区域涉及地表水水体为巩家沟和庞家堰。巩家沟为庞家堰西岸（右岸）支流，与从团结水库发育的支沟汇合后，由西北向南东流入庞家堰，庞家堰再流经21.3公里后入涪江。巩家沟与庞家堰水体功能为泄洪、纳污、农灌。经调查，本项目所在位置地表水体下游10km范围内无集中式饮用水取排水口。本项目距绵阳市城市规划建成区直线距离12.0km，具备较便利的交通运输条件和水、电供给条件。

根据拟建厂址的环境特征，环境关系及环境功能区划，确定项目环境保护目标如下：

<table>
<thead>
<tr>
<th>表2-17 主要环境保护目标</th>
<th>环境要素</th>
<th>保护目标</th>
<th>方位</th>
<th>最近距离（m）</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>环境空气</td>
<td>坚堡梁村</td>
<td>东</td>
<td>1000m</td>
<td>坚堡梁村6、9社约60户</td>
<td>1#</td>
</tr>
<tr>
<td></td>
<td>东北</td>
<td>600m</td>
<td>坚堡梁村6社散居约8户</td>
<td>2#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>东北</td>
<td>1200m</td>
<td>坚堡梁村9社约50户</td>
<td>3#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>东北</td>
<td>1400m</td>
<td>坚堡梁村9社约20户</td>
<td>4#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>南</td>
<td>690m</td>
<td>坚堡梁村3社约35户</td>
<td>5#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>东南</td>
<td>690m</td>
<td>坚堡梁村6社散居约15户</td>
<td>6#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>老君村</td>
<td>东</td>
<td>2600m</td>
<td>老君村5社农户，约50户</td>
<td>7#</td>
</tr>
<tr>
<td></td>
<td>东北</td>
<td>2000m</td>
<td>老君村8社，约20户</td>
<td>8#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>任家村</td>
<td>东南</td>
<td>2600m</td>
<td>任家村约70户</td>
<td>9#</td>
</tr>
<tr>
<td></td>
<td>东南</td>
<td>1300m</td>
<td>任家村3社农户，约15户</td>
<td>10#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>东南</td>
<td>1500m</td>
<td>任家村3社农户，约18户</td>
<td>11#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>高山寺村</td>
<td>东北</td>
<td>1550m</td>
<td>约80户</td>
<td>12#</td>
</tr>
<tr>
<td></td>
<td>北</td>
<td>1000m</td>
<td>高山寺村10社约15户</td>
<td>13#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>北</td>
<td>1050m</td>
<td>高山寺村7社约35户</td>
<td>14#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>北</td>
<td>1150m</td>
<td>高山寺村9社约20户</td>
<td>15#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>爱民村</td>
<td>西北</td>
<td>1300m</td>
<td>约50户</td>
<td>16#</td>
</tr>
<tr>
<td></td>
<td>西北</td>
<td>1100m</td>
<td>爱民村散居农户，约35户</td>
<td>17#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>西</td>
<td>1800m</td>
<td>爱民村散居农户，约15户</td>
<td>18#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>草堂村</td>
<td>南</td>
<td>2000m</td>
<td>约75户</td>
<td>19#</td>
</tr>
</tbody>
</table>
环境影响报告书

绵阳市餐厨废弃物资源化利用和无害化处理项目扩建 100t/d 生产线项目

2.7 项目建设与国家产业政策和当地规划的符合性

2.7.1 与国家产业政策的符合性

根据 2020 年 1 月 1 日国家发改委第 29 号令《产业结构调整指导目录（2019 年本）》，第一类鼓励类中第四十三条“环境保护与资源节约综合利用”中的第 34 款“餐厨废弃物资源化利用技术开发及设施建设”的投资项目，本项目属国家当前鼓励建设的项目。

因此，本工程建设符合现行国家产业政策及相关规定。

2.7.2 选址合理性分析

1、与当地规划符合性

通过对城市总体规划、相关旅游发展规划等规划的适宜性分析，结合在全绵阳市范围内可选建设地点选址的经济论证以及场地建设条件的分析，绵阳市餐厨

<table>
<thead>
<tr>
<th>地表水</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>巩家沟</td>
<td>东</td>
<td>3300m</td>
<td>水体功能泄洪、纳污、农灌</td>
<td></td>
</tr>
<tr>
<td>庞家堰</td>
<td>东</td>
<td>10km</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

说明：上述统计，除玉皇镇场镇住户外，其余各村住户大多是 1 栋房 2~3 个户口。
废弃物资源化利用和无害化处理项目最终拟选定在现绵阳市生活垃圾填埋场红线范围内（绵阳市玉皇镇坚堡梁村八社）建设。绵阳市涪城区人民政府出具规划承诺：“控制玉皇镇的发展规模，调整现镇区东面的绵中公路东侧预留区域规划，限制该预留区域的用地性质，不建设商住、教育、卫生、食品医药等环境敏感项目。”（绵涪府函【2014】76 号）。

对于本项目拟选厂址，绵阳市城乡规划局出具了《建设项目选址意见书》选字第（2015）19 号，同意本项目选址位置。

该选址为绵阳市现有的环境卫生设施用地，符合绵阳市城市总体规划和环境卫生规划。

2、与《餐厨垃圾处理技术规范》（CJJ184-2012）选址有关要求符合性分析

根据《餐厨垃圾处理技术规范》（CJJ184-2012）选址相关要求，本项目选址与规范要求对比如下表 2-18。

<table>
<thead>
<tr>
<th>序号</th>
<th>规范要求</th>
<th>本项目</th>
<th>是否符合</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>餐厨垃圾处理厂的选址应符合当地城市总体规划，区域环境规划，城市环境卫生专业规划及相关规划的要求。</td>
<td>选址符合绵阳市城市总体规划，绵阳市“十二五”环境保护规划，绵阳市城市环境卫生专业规划，规划部分同意项目选址。</td>
<td>符合</td>
</tr>
<tr>
<td>2</td>
<td>厂址选择应综合考虑餐厨垃圾处理厂的服务区域、服务单位、垃圾收集运输能力、运输距离、预留发展等因素。</td>
<td>距中心城区约 15 公里，运距合理，有预留发展用地。</td>
<td>符合</td>
</tr>
<tr>
<td>3</td>
<td>餐厨垃圾处理设施宜与其他固体废物处理设施或污水处理设施同址建设。</td>
<td>本项目选址位于现绵阳市生活垃圾填埋场红线范围内，周边企业为垃圾填埋场（已建）、垃圾焚烧发电厂（待建）、医疗废物处理厂（待建）。</td>
<td>符合</td>
</tr>
</tbody>
</table>
| 4 | 厂址选择应符合下列条件：
1. 工程地质与水文地质条件应满足处理设施建设和运行的要求。
2. 应有良好的交通、电力、给水和排水条件。
3. 应避开环境敏感区、洪泛区、重点文物保护区等。 | 1. 工程地质与水文地质条件满足处理设施建设及运行的要求。
2. 有良好的交通、电力、给水和排水条件。
3. 处在城市常年主导风向的下方，附近 500 米范围内无工业企业、居民区、水源地、洪泛区、重点文物保护单位及重点名胜古迹和风景等。 | 符合 |

因此，由上表可见，本项目选址符合《餐厨垃圾处理技术规范》（CJJ184-2012）。
选址的相关要求。

2.7.3 “三线一单”符合性分析

（1）生态保护红线

生态保护红线是生态空间范围内具有特殊重要生态功能必须实行强制性严格保护的区域。相关规划环评应将生态空间管控作为重要内容, 规划区域涉及生态保护红线的, 在规划环评结论和审查意见中应落实生态保护红线的管理要求, 提出相应对策措施。除受自然条件限制、确实无法避让的铁路、公路、航道、防洪、 管道、干渠、通讯、输变电等重要基础设施项目外, 在生态保护红线范围内, 严控各类开发建设活动, 依法不予审批新建工业项目和矿产开发项目的环评文件。

根据《四川省人民政府关于印发四川省生态保护红线方案的通知》(川府发 (2018)24 号)文中(二)生态保护红线类型分布、13. 盆中城市饮用水源-水土保持生态保护红线。地理分布：该区位于四川省东部成都平原及盆地丘陵区，行政区涉及成都市、自贡市、德阳市、绵阳市、广元市、遂宁市、内江市、乐山市、南充市、眉山市、广安市、达州市、巴中市、资阳市, 总面积 0.08 万平方公里, 占生态保护红线总面积的 0.54%, 占全省幅员面积的 0.17%。

根据四川省生态保护红线分布图(附图)，本项目位于位于绵阳市涪城区玉皇镇坚堡梁村，不在四川省生态保护红线范围内。

（2）环境质量底线

是国家和地方设置的大气、水和土壤环境质量目标，也是改善环境质量的基准线。有关规划环评应落实区域环境质量目标管理要求，提出区域或者行业污染物排放总量管控建议以及优化区域或行业发展布局、结构和规模的对策措施。项目环评应对照区域环境质量目标，深入分析预测项目建设对环境质量的影响，强化污染防治措施和污染物排放控制要求。项目选址区域为环境空气功能区二类区，执行二级标准。根据环境监测数据，项目周边大气环境监测点位各监测因子均达到相应标准要求；地表水坝家沟和庞家堰所有断面的 COD、BOD5、氨氮、总磷均有超标，其余监测断面的各监测指标均符合《地表水环境质量标准》(GB3838-2002)II类标准限值；周边地下水质量能达到《地下水质量标准》(GB/T 14848-2017)III类标准；项目所在区域声环境质量良好。
根据本报告各专章分析表明：本项目运行过程产生的废气经处理设施处理后可达到相关排放标准，对周围大气影响较小；本项目废水送至水务集团所属垃圾埋填场渗滤液处理站处理达标后排放；经预测，本项目投产后厂界噪声能达到《工业企业厂界环境噪声排放标准（GB12348-2008）》中3类标准限值要求；本项目产生的固废均按相关要求进行妥善处理。

因此，本项目建设符合环境质量底线要求。

（3）资源利用上线

资源是环境的载体，“资源利用上线”地区能源、水、土地等资源消耗不得突破的“天花板”。相关规划环评应依据有关资源利用上线，对规划实施以及规划内项目的资源开发利用，区分不同行业，从能源资源开发等量或减量替代、开采方式和规模控制、利用效率和保护措施等方面提出建议，为规划编制和审批决策提供重要依据；本项目所使用的能源主要为蒸汽、水、电能，物耗及能耗水平均较低，符合清洁生产的要求，不超出当地资源利用上线。

因此，项目资源利用满足要求。

（4）环境准入负面清单

“环境准入负面清单”是基于生态保护红线、环境质量底线和资源利用上线，以清单方式列出的禁止、限制等差别化环境准入条件和要求。要在规划环评清单式管理试点的基础上，从布局选址、资源利用效率、资源配置方式等方面入手，制定环境准入负面清单，充分发挥负面清单对产业发展和项目准入的指导和约束作用。本项目为餐厨垃圾资源化利用和无害化处理项目，经查《市场准入负面清单草案》(试点版)，本项目不在其禁止准入类和限制准入类中；对照国《产业结构调整指导目录(2019 年本)》，本项目符合国家、地方及行业产业政策。项目不在“环境准入负面清单”内。综上，项目不涉及自然资源开发利用，且区域内有足够的环境容量，项目建成后不会对区域内环境质量造成严重影响。

因此，项目建设符合“三线一单”相关要求。

2.8 评价工作程序

根据《中华人民共和国环境保护法》《中华人民共和国环境影响评价法》和《建设项目环境保护管理条例》《建设项目环境影响评价分类管理名录》及其修改单的有关规定，本项目应编制环境影响评价报告书，具体情况见下表 2-19。
根据《建设项目环境影响评价技术导则-总纲》(HJ2.1-2016)等相关技术规范的要求，环境影响评价工作一般分为三个阶段，即调查分析和工作方案制定阶段，分析论证和预测评价阶段，环境影响报告书编制阶段。本次评价过程首先是研究相关文件，包括国家和地方有关环境保护的法律法规、政策、标准及相关规划等，依据相关规定确定环境影响评价文件类型;在研究相关技术文件和其他文件的基础上，进行了初步工程分析，开展初步的环境状况调查;根据相关要求及项目特点进行了环境影响因素识别与评价因子筛选，明确了评价重点和环境保护目标，确定工作等级、评价范围和评价标准，同时制定工作方案;然后进行评价范围内的环境状况调查、监测与评价，建设项目工程分析，之后进行各环境要素环境影响预测与评价、各专题环境影响分析与评价，最后提出环境保护措施，进行技术经济论证，给出建设项目环境可行性的评价结论。
本次评价工作程序如图所示。

环境影响评价委托

第 一 阶 段

1 研究国家和地方有关环境保护的法律法规、政策、标准及相关规划等
2 依据相关规定确定环境影响文件类型

环境影响因素识别与评价因子筛选

1 研究相关技术文件和其他有关文件
2 进行初步工程分析
3 开展初步的环境状况调查

制定工作方案

公众参与

第 二 阶 段

有重大变化

评价范围内的环境现状调查、监测与评价
建设项目工程分析

各环境要素环境影响预测与评价
各专题环境影响预测与评价

第三阶段

1 提出环境保护措施，进行经济技术论证
2 给出建设项目环境可行性的评价结论

编制环境影响评价文件

20
3 现有项目工程分析

3.1 现有工程概况

绵阳中科绵投环境服务有限公司投资 6200 万元建成绵阳市餐厨废弃物资源化利用和无害化处理项目，实际处理餐厨废弃物 100t/d，采用“预处理+油水分离+厌氧发酵”工艺处理餐厨废弃物，占地面积约 20 亩，建筑面积 3200m²，劳动定员 16 人，生产实行三班制，工作时间 24h，年工作 365 天。

3.2 现有工程项目组成

现有项目主要组成见下表 3-1。

<table>
<thead>
<tr>
<th>表 3-1 工程项目组成表</th>
</tr>
</thead>
<tbody>
<tr>
<td>工程类别</td>
</tr>
<tr>
<td>主体工程</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>辅助工程</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

21
设备情况

现有工程设备情况见下表 3-2。

<table>
<thead>
<tr>
<th>编号</th>
<th>名称</th>
<th>规格</th>
<th>功率/KW</th>
<th>单位</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>一</td>
<td>预处理系统</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(一) 接料分拣系统

<table>
<thead>
<tr>
<th>序号</th>
<th>设备</th>
<th>规格</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>接料斗</td>
<td>V=15m³</td>
<td>2套</td>
</tr>
<tr>
<td>2</td>
<td>分拣机</td>
<td>Q=11t/h</td>
<td>1套</td>
</tr>
<tr>
<td>3</td>
<td>破碎筛分机</td>
<td>Q=10t/h</td>
<td>1套</td>
</tr>
<tr>
<td>4</td>
<td>沉砂机</td>
<td>V=5m³, Q=15t/h</td>
<td>1套</td>
</tr>
<tr>
<td>5</td>
<td>链板输送机</td>
<td>B=600mm, L=8.2m</td>
<td>1套</td>
</tr>
<tr>
<td>6</td>
<td>水池搅拌机</td>
<td>叶片ф0.8m</td>
<td>5套</td>
</tr>
</tbody>
</table>

(二) 油水分离系统

<table>
<thead>
<tr>
<th>序号</th>
<th>设备</th>
<th>规格</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>组合加热器</td>
<td>4×1.2m³</td>
<td>1套</td>
</tr>
<tr>
<td>8</td>
<td>三相分离机</td>
<td>Q=10m³/h</td>
<td>52套</td>
</tr>
<tr>
<td>9</td>
<td>立式分离机</td>
<td>5t/h</td>
<td>15套</td>
</tr>
<tr>
<td>10</td>
<td>冷却塔</td>
<td>Q=50t/h</td>
<td>1套</td>
</tr>
<tr>
<td>11</td>
<td>接料斗集气罩</td>
<td>0.3套</td>
<td>2套</td>
</tr>
</tbody>
</table>

(二) 厌氧发酵系统

<table>
<thead>
<tr>
<th>序号</th>
<th>设备</th>
<th>规格</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>均质罐</td>
<td>Φ7.5m×H7.0m, Vₚ=300m³, 地上钢结构罐体</td>
<td>1座</td>
</tr>
<tr>
<td>13</td>
<td>厌氧发酵罐</td>
<td>Φ15.2m×H19.2m, Vₚ=3000m³, 地上钢结构罐体</td>
<td>1座</td>
</tr>
<tr>
<td>14</td>
<td>沼液暂存罐</td>
<td>Φ6m×H6m, Vₚ=170m³, 地上钢结构罐体</td>
<td>1座</td>
</tr>
</tbody>
</table>

(三) 沼渣脱水处理系统

<table>
<thead>
<tr>
<th>序号</th>
<th>设备</th>
<th>规格</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>离心脱水机</td>
<td>Q=90~150kg-Ds/h, N=2.2kW</td>
<td>2台</td>
</tr>
<tr>
<td>16</td>
<td>PAM 自动泡药机</td>
<td>Q=2000L/h, N=1.9kW</td>
<td>1台</td>
</tr>
<tr>
<td>17</td>
<td>PAC 自动泡药机</td>
<td>Q=500L/h, N=1.9kW</td>
<td>1台</td>
</tr>
<tr>
<td>18</td>
<td>无轴螺旋输送机</td>
<td>Φ300 L=7m, 安装倾角20℃, N=1.5kW</td>
<td>2台</td>
</tr>
</tbody>
</table>

(四) 沼气净化处理系统

<table>
<thead>
<tr>
<th>序号</th>
<th>设备</th>
<th>规格</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>双皮膜储气柜</td>
<td>800m³</td>
<td>1台</td>
</tr>
<tr>
<td>20</td>
<td>防爆离心风机</td>
<td>Q=1116m³/h, ΔP=3647Pa, N=2.2kW, U=380V</td>
<td>1台</td>
</tr>
<tr>
<td>21</td>
<td>脱硫塔</td>
<td>Φ2000×5500mm</td>
<td>2台</td>
</tr>
<tr>
<td>22</td>
<td>罗茨风机 I</td>
<td>Q=6.87m³/min, P=49kpa, 11kW, U=380V</td>
<td>2台</td>
</tr>
<tr>
<td>23</td>
<td>罗茨风机 II</td>
<td>Q=7.44m³/min, P=29.4kpa, 7.5kW, U=380V</td>
<td>1台</td>
</tr>
<tr>
<td>24</td>
<td>粗过滤器</td>
<td>Φ600×1300mm</td>
<td>1台</td>
</tr>
<tr>
<td>25</td>
<td>精密过滤器</td>
<td>Φ600×1300mm</td>
<td>1台</td>
</tr>
<tr>
<td>26</td>
<td>火炬系统</td>
<td>处理能力: 600Nm³/hr</td>
<td>1套</td>
</tr>
</tbody>
</table>
3.5 产品方案

现有产品方案见下表 3-3。

<table>
<thead>
<tr>
<th>产品名称</th>
<th>单位</th>
<th>产量</th>
<th>运输包装方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>沼气</td>
<td>万m³/a</td>
<td>219</td>
<td>/</td>
<td>火炬燃烧后排放</td>
</tr>
<tr>
<td>粗油脂</td>
<td>t/a</td>
<td>949</td>
<td>汽车/桶装</td>
<td></td>
</tr>
</tbody>
</table>

3.6 现有工程水平衡

项目用水主要为生产用水、生活用水和绿化用水。生产用水包括冷却循环用水、喷淋除臭用水、滤池除臭用水、预处理系统用水和车辆冲洗等；生活用水为锅炉化水用水以及绿化用水道路壤土水等，本项目工程新水量 71.5t/d，用水量见表 3-4、3-5，见图 3-1。

<table>
<thead>
<tr>
<th>类别及说明</th>
<th>日用水量 (m³/d)</th>
<th>日废水量 (m³/d)</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>预处理系统用水</td>
<td>34.8（实际由于来料含水量低、额外补水约20吨）</td>
<td>101.7（其中餐厨垃圾带水66.9）</td>
<td>生产废水</td>
</tr>
<tr>
<td>喷雾除臭系统用水</td>
<td>0.3</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>滤池除臭系统用水</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>设备、车间地坪及垃圾车辆冲洗</td>
<td>6.3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>冷却循环水补充水</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 3-5 本项目生活、办公用水量

<table>
<thead>
<tr>
<th>类 别</th>
<th>日用水量（m³/d）</th>
<th>日排污水量（m³/d）</th>
</tr>
</thead>
<tbody>
<tr>
<td>员工生活用水</td>
<td>0.34</td>
<td>0.30</td>
</tr>
</tbody>
</table>

图 3-1 项目水平衡图

- 自来水
- 工业水（取自附近水库）
- 沼渣脱水配药用水
- 设备、车间地坪及车辆冲洗
- 餐厨垃圾带入水
- 滤池除臭用水
- 喷雾除臭用水
- 冷却循环补水
- 道路地坪洒水
- 绿化用水
- 生活、办公用水
- 预处理系统用水
3.7 现有项目工艺流程

现有项目工艺流程图见下图 3-2.

整个处理工艺包括以下 7 个工艺系统:
1）预处理系统;
2）厌氧发酵系统;
3）沼渣脱水处理系统
4）污水处理系统;
5）沼气净化处理系统;
6）通风除臭系统。
一）预处理系统

餐厨废弃物收运车过磅后，先将垃圾倒入接料斗中。接料斗为密闭式结构，顶部设密封盖，收运车卸料时，密封盖自动开启，卸料结束，密封盖自动关闭。接料斗上方设集气罩，收集卸料过程产生的臭气。

预处理系统采用全封闭式机械化连续运行，可有效解决餐厨垃圾因粘度大、杂物多造成的难以处理的问题，并有效减少了恶臭的产生量。油水分离系统—湿热处理工艺原理

餐厨垃圾中，油脂主要以可浮油、固相内部油脂、分散油、乳化油、溶解油5种形式存在。其中，可浮油滴径较大，静置后能较快上浮，以连续相油膜的形式漂浮于油面；分散油、乳化油以微小油珠悬浮分散在水相中；溶解油以分子状态分散于水中，与水形成均相体系，分离较难；固相内部油脂含于垃圾固相细胞或其他结构中，传统方法难以分离。

为了提高固相内部油脂的回收率，首先将这些油脂从固相内部浸出，进入液相，变成可浮油，然后利用油水分离方式分离出来。湿热处理正是基于这一原理，通过控制加热温度、时间，达到分离油脂的目的。

料浆通过两次蒸汽加热处理，极大提高了料浆中油脂的分离效率。

（二）厌氧发酵系统

项目采用单相中温厌氧消化发酵工艺。厌氧消化，是指在无氧条件下，以厌
氧微生物为主有控制地使可生物降解有机物向稳定物质转化的生物化学过程，在厌氧消化过程中，复杂的有机物被降解为简单、稳定的物质，最终转化为甲烷和二氧化碳，有机质的厌氧消化过程是一个非常复杂的多步骤、由多种微生物共同作用的生化过程。通常认为，在厌氧反应中主要有水解酸化和甲烷发酵阶段的两大类作用的细菌，而水解酸化菌和产甲烷菌对环境条件有着不同的要求。一般情况下，产甲烷阶段是整个厌氧消化的控制阶段，为了使厌氧消化过程完整地进行就必须首先满足产甲烷菌的生长条件，如维持一定的温度、增加反应时间等，特别是对难降解有机物需要长时间的驯化才能适应，本项目将厌氧消化工艺把产酸菌和产甲烷菌这两大类菌群置于一个反应器内，即单相厌氧消化工艺。根据物料平衡，预处理后有机浆液量为 96.2t/d，TS 浓度为 5.4%，考虑一定富裕，本次设计按处理能力 100t/d，TS 含量为 6.0% 进行设计。

（三）沼渣脱水处理系统

厌氧罐产生的沼液进入沼液暂存罐，经短暂停留后，通过螺杆泵泵入叠螺脱水机附属水箱，加入絮凝剂后，进行脱水，固液分离后的液相进入生产废水收集池，废水泵至垃圾填埋场渗滤液调节池，最终进入垃圾渗滤液处理系统进行处理后达标排放，脱水后沼渣进入垃圾焚烧发电项目焚烧。经过物料衡算，厌氧发酵后产生的沼液约 96.2m³/d，本项目脱水系统处理规模为 100m³/d，绝干污泥量约 1.6t/d，80%含水率污泥量为 7.9t/d。

（四）污水处理系统

根据物料平衡计算，本工程污水产生量约 125.1m³/d，包括冲洗废水 5m³/d，餐厨垃圾带入水 69.9m³/d 等。

本工程产生的废水通过管道输送至所属垃圾填埋场渗滤液处理站一并进行处理。污水处理达到《生活垃圾填埋场污染控制标准》（GB16889-2008）中表 2 标准后排入附近水体巩家沟，巩家沟流经 9.7km 进入庞家堰，再流经 21.3km 进入涪江。

（五）沼气净化处理系统

本工程沼气来源于厌氧发酵系统，预计为 3200Nm³/d，沼气增压后进入垃圾焚烧炉助燃，此部分沼气无需脱硫处理。在垃圾焚烧炉故障时，沼气经脱水脱硫预处理后进入沼气锅炉焚烧。
沼气净化系统工艺流程为：来自厌氧发酵的沼气（P=~2kPa，T=35℃，H2S≤3000ppm），首先通过砾石过滤器将沼气中的部分液态水和大颗粒的杂质除去，然后直接进入800m³的双皮膜储气柜的缓冲储存；经过罗茨风机增压至系统所需要的压力（15～20kPa），接着通过脱硫系统将沼气中的H2S降至100ppm以内；脱硫后的沼气再经过精密过滤器将沼气的粉尘降至3μm，再经冷干机及气液分离器降温除水后，直接输送至用气点。也可通过罗茨风机升压后直接进入焚烧炉。

本系统中采用的脱硫工艺为干式脱硫工艺。干法脱除沼气气体中硫化氢（H2S）的设备基本原理是使H2S氧化成硫或硫氧化物的一种方法，也可称为干式氧化法。干法设备的构成是，在一个容器内放入脱硫剂。气体以低流速从一端经过容器内脱硫剂床，硫化氢（H2S）氧化成硫或硫氧化物后，余留在床层中，净化后气体从容器另一端排出。脱硫后沼气中硫化氢含量小于100ppm。

为提高脱硫剂的利用效率，本工程设计两台脱硫塔，各塔之间并联操作。在各塔气体出口处设置分析取样点，当检测到某塔出口气H2S浓度接近原料气浓度时，将该塔与流程切断隔离，更换脱硫剂。

（六）通风除臭系统

为了减少臭气产量，将能密封的设备和空间尽量密闭，从而减少臭气扩散空间。对已产生的臭气采用“前端喷淋除臭＋负压收集＋生物滴滤池”的方式进行处理。前端喷淋除臭设置高效除臭剂喷淋装置，主要喷淋点包括：卸料大厅及综合处理车间。在综合处理车间设置局部集气罩（卸料口和组合水池），利用风机抽吸至生物滤池，经处理达标后15m高空排放。工艺流程如下图3-2：
生物滴滤池工艺流程详见下图3-3。

图3-3 生物滴滤池工艺流程图

通风除臭系统工艺流程简述如下：

前端喷淋除臭设置高效除臭菌剂喷淋装置，主要喷淋点包括：卸料大厅及综合处理车间，前端除臭效率约60%；项目臭气收集系统分三路收集臭气，第一分路为卸料大厅，采用整体换气，换气次数为6次/h，风量为20000m³/h；第二及第三分路均设于餐厨废弃物综合处理车间内，采用整体换气，换气次数为6次/h，总风量为40000m³/h；另外在卸料口和组合水池（地上式）处采用局部抽吸方式，总风量为1500m³/h。以上臭气通过离心风机增压引入生物除臭滤池。生物滤池内填充复合式固定生物滤料，循环水泵将营养液（为微生物提供氮源）间歇喷洒在填料上，填料表面被微生物形成的生物膜所覆盖。臭气通过生物滤池填料层时，恶臭污染物被微生物降解。项目臭气收集系统的捕集率按90%计，除臭净化效率为90%。

3.8现有工程污染治理及污染物排放情况

1、废气

本项目产生的废气主要是恶臭气体和沼气燃烧烟气。恶臭气体来源主要为餐厨废弃物处理环节。餐厨废弃物处理过程中恶臭气体主要来自综合处理车间接料斗、分拣机、筛分机、输送机等设备处，以及卸料大厅、组合水池（地上式）和污泥脱水等作业区；净化后的沼气燃烧过程产生烟气，主要污染物为NOx、SO2和TSP。

为防止臭气污染空气、危害人的健康，必须采用除臭措施进行治理，严格控制臭气扩散带来的环境污染。
项目餐厨废弃物处理过程中厌氧发酵产生沼气，其主要成分为甲烷，与天然气成分类似，经净化处理后为洁净能源，通过火炬燃烧后，烟气通过 16 米高排放口排放。

根据餐厨废弃物资源化利用和无害化处理项目竣工环境保护验收监测报告，处理后废气排放情况见下表 3-6、3-7、3-8。

<table>
<thead>
<tr>
<th>污染物</th>
<th>烟气量 (m³/h)</th>
<th>排放浓度 (mg/m³)</th>
<th>排放速率 (kg/h)</th>
<th>排放量 (t/a)</th>
<th>年工作按 365 天计</th>
<th>GB13271-2014 标准值 (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP</td>
<td>1982.5 (沼气中)</td>
<td>16.6</td>
<td>0.033</td>
<td>0.289</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>SO₂</td>
<td>55%甲烷燃烧后的烟气 + 沼气中 45%的其他气体</td>
<td>1.16</td>
<td>0.0023</td>
<td>0.020</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>NOₓ</td>
<td></td>
<td>43.9</td>
<td>0.087</td>
<td>0.762</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

注：火炬高度 16m

由上表可见，沼气燃烧烟气通过 16 米火炬排放，各污染物能满足《锅炉大气污染物排放标准》（GB13271-2014）排放标准限值要求。

<table>
<thead>
<tr>
<th>样本信息</th>
<th>检测结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>采样日期</td>
<td>序号</td>
</tr>
<tr>
<td></td>
<td>0001</td>
</tr>
<tr>
<td>12月13日</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>12月 14日</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>硫化氢标干排气流量 m³/h</td>
</tr>
<tr>
<td></td>
<td>实测浓度 mg/m³</td>
</tr>
<tr>
<td></td>
<td>排放浓度 mg/m³</td>
</tr>
<tr>
<td></td>
<td>排放速率 kg/h</td>
</tr>
<tr>
<td></td>
<td>达标负数</td>
</tr>
<tr>
<td></td>
<td>臭气浓度无量纲</td>
</tr>
<tr>
<td></td>
<td>实测浓度</td>
</tr>
<tr>
<td></td>
<td>排放浓度 mg/m³</td>
</tr>
<tr>
<td></td>
<td>排放速率 kg/h</td>
</tr>
<tr>
<td></td>
<td>达标负数</td>
</tr>
<tr>
<td></td>
<td>硫化氢标干排气流量 m³/h</td>
</tr>
</tbody>
</table>
表 3-8 无组织排放监测结果表

<table>
<thead>
<tr>
<th>监测点位</th>
<th>监测日期</th>
<th>监测项目</th>
<th>监测结果</th>
<th>标准限值</th>
</tr>
</thead>
<tbody>
<tr>
<td>东北侧厂界外</td>
<td>2019年12月13日</td>
<td>NH₃</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂S</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>颗粒物</td>
<td>0.267</td>
<td>0.233</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOCs</td>
<td>0.72</td>
<td>0.74</td>
</tr>
<tr>
<td>西侧厂界外</td>
<td>2019年12月13日</td>
<td>NH₃</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂S</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>颗粒物</td>
<td>0.233</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOCs</td>
<td>0.76</td>
<td>0.82</td>
</tr>
<tr>
<td>东南侧厂界外</td>
<td>2019年12月13日</td>
<td>NH₃</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂S</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>颗粒物</td>
<td>0.200</td>
<td>0.183</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOCs</td>
<td>0.78</td>
<td>0.85</td>
</tr>
<tr>
<td>东北侧厂界外</td>
<td>2019年12月13日</td>
<td>NH₃</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂S</td>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>
绵阳市餐厨废弃物资源化利用和无害化处理项目扩建100t/d生产线项目

<table>
<thead>
<tr>
<th></th>
<th>颗粒物</th>
<th>VOCs</th>
<th>NH₃</th>
<th>H₂S</th>
<th>颗粒物</th>
<th>VOCs</th>
<th>NH₃</th>
<th>H₂S</th>
</tr>
</thead>
<tbody>
<tr>
<td>西侧厂界外</td>
<td>0.234</td>
<td>0.51</td>
<td>0.11</td>
<td>0.07</td>
<td>0.200</td>
<td>0.54</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.267</td>
<td>0.62</td>
<td>0.10</td>
<td>0.04</td>
<td>0.217</td>
<td>0.56</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.234</td>
<td>0.51</td>
<td>0.11</td>
<td>0.07</td>
<td>0.183</td>
<td>0.59</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.245</td>
<td>0.55</td>
<td>0.11</td>
<td>0.06</td>
<td>0.20</td>
<td>0.56</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.267</td>
<td>0.62</td>
<td>0.11</td>
<td>0.07</td>
<td>0.217</td>
<td>0.59</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>西南侧厂界外</td>
<td>0.233</td>
<td>0.54</td>
<td>0.05</td>
<td>0.06</td>
<td>0.250</td>
<td>0.63</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.267</td>
<td>0.63</td>
<td>0.05</td>
<td>0.06</td>
<td>0.250</td>
<td>0.62</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>0.62</td>
<td>0.07</td>
<td>0.07</td>
<td>0.267</td>
<td>0.63</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

由上表可知，该公司无组织颗粒物排放浓度符合《大气污染物综合排放标准》(GB16297-1996) 表 2“无组织排放监控浓度限值”，VOCs 符合《四川省固定污染源大气挥发性有机物排放标准》表 5 中限值，氨、硫化氢符合《恶臭污染物排放标准》表 1 中二级新扩改限值；无组织排放恶臭浓度最大值为 15，满足《恶臭污染物排放标准》表 1 中二级新扩改限值(20)要求。

2）废水

项目废水主要为废沼液、冲洗废水及生活污水，项目废水统一排入填埋场渗滤液处理站进行处理后达标排放。本项目废水排放口监测结果如下（引用医废项目检测报告相关结果，医废项目废水与本项目废水均排入同一填埋场渗滤处理站处理达标后，经同一总排口排放）

采样日期 2019.12.13

<table>
<thead>
<tr>
<th>项目及结果</th>
<th>pH（无量纲）</th>
<th>色度（倍）</th>
<th>悬浮物（mg/l）</th>
<th>化学需氧量（mg/l）</th>
<th>五日生化需氧量（mg/l）</th>
<th>氨氮（mg/l）</th>
<th>总氮（mg/l）</th>
</tr>
</thead>
<tbody>
<tr>
<td>总排口日均值</td>
<td>6.72-6.84</td>
<td>2</td>
<td>3</td>
<td>23</td>
<td>5.6</td>
<td>0.174</td>
<td>0.94</td>
</tr>
<tr>
<td>限值</td>
<td>/</td>
<td>40</td>
<td>30</td>
<td>100</td>
<td>30</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>评价</td>
<td>/</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
</tr>
</tbody>
</table>

采样日期 2019.12.13

<table>
<thead>
<tr>
<th>项目及结果</th>
<th>总磷（mg/l）</th>
<th>汞（mg/l）</th>
<th>总铬（mg/l）</th>
<th>六价铬（mg/l）</th>
<th>砷（mg/l）</th>
<th>镉（mg/l）</th>
<th>汞大肠（mg/l）</th>
<th>菌群</th>
<th>总镉（mg/l）</th>
</tr>
</thead>
</table>

35
<table>
<thead>
<tr>
<th>项目及结果</th>
<th>pH（无量纲）</th>
<th>色度（倍）</th>
<th>悬浮物（mg/l）</th>
<th>化学需氧量（mg/l）</th>
<th>五日生化需氧量（mg/l）</th>
<th>氨氮（mg/l）</th>
<th>总氮（mg/l）</th>
</tr>
</thead>
<tbody>
<tr>
<td>总排口日均值</td>
<td>6.75-6.83</td>
<td>2</td>
<td>7</td>
<td>22</td>
<td>5.2</td>
<td>0.176</td>
<td>0.95</td>
</tr>
<tr>
<td>限值</td>
<td>/</td>
<td>40</td>
<td>30</td>
<td>100</td>
<td>30</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>评价</td>
<td>/</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
</tr>
</tbody>
</table>

项目及结果

<table>
<thead>
<tr>
<th>项目及结果</th>
<th>总磷（mg/l）</th>
<th>汞（mg/l）</th>
<th>总铬（mg/l）</th>
<th>六价铬（mg/l）</th>
<th>砷（mg/l）</th>
<th>粪大肠菌群（mg/l）</th>
<th>总镉（mg/l）</th>
<th>总铅（mg/l）</th>
</tr>
</thead>
<tbody>
<tr>
<td>日均值</td>
<td>0.08</td>
<td>未检出</td>
<td>0.015</td>
<td>0.006</td>
<td>0.0008</td>
<td><20</td>
<td>0.00008</td>
<td>未检出</td>
</tr>
<tr>
<td>限值</td>
<td>3</td>
<td>0.001</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
<td>10000</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>评价</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
</tr>
</tbody>
</table>

评价结论：本次检测结果表明，该项目总排口废水所测指标色度、悬浮物、化学需氧量、五日生化需氧量、氨氮、总氮、总磷、汞、总铬、六价铬、砷、粪大肠菌群、总镉、总铅的排放浓度均符合《生活垃圾填埋场污染控制标准》（GB16889-2008）表2中限值标准。

3）噪声

项目运营期噪声源主要为各种生产处理设备的运行噪声，包括进料机、分拣机、破碎筛分机、输送机等，以及公用辅助设备的水泵、引风机、空压机和冷却塔等。通过选用低噪声设备、管道接口采用柔性联结以及厂房隔声等降噪措施，噪声监测结果引用餐厨一期项目验收监测报告。
由上表可知，昼间和夜间厂界噪声符合《工业企业厂界环境噪声排放标准》（GB3096-2008）2 类标准限值。

4）固废

项目运营期产生的固体废物主要包括餐厨废弃物处理工艺中分拣环节产生的木塑杂物，压榨环节产生的固相物，厌氧发酵最后产生的沼渣，废脱硫剂以及职工生活垃圾，固废产生情况引用餐厨一期项目验收监测报告。

表 3-10 项目固体废物产生情况

<table>
<thead>
<tr>
<th>编号</th>
<th>名称</th>
<th>废物类别</th>
<th>废物代码</th>
<th>环评估计年产生量（t/a）</th>
<th>实际年产生量（t/a）</th>
<th>采取的处理处置方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>预处理废渣</td>
<td>一般固废</td>
<td>/</td>
<td>10402.5</td>
<td>5400</td>
<td>送垃圾焚烧项目焚烧</td>
</tr>
<tr>
<td>2</td>
<td>废脱硫剂</td>
<td>/</td>
<td>2</td>
<td>3</td>
<td>项目检修由外包公司完成，产生的固废由外包单位收运，项目不设固废暂存间</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>废油脂</td>
<td>/</td>
<td>1278</td>
<td>949</td>
<td></td>
<td>外销</td>
</tr>
<tr>
<td>4</td>
<td>厌氧发酵系统产生的沼渣</td>
<td>/</td>
<td>2884</td>
<td>2880</td>
<td></td>
<td>送污泥干化项目干化后由垃圾焚烧项目焚烧</td>
</tr>
<tr>
<td>6</td>
<td>废润滑油</td>
<td>HW08</td>
<td>/</td>
<td>0.016</td>
<td></td>
<td>项目检修由外包公司完成</td>
</tr>
<tr>
<td>7</td>
<td>废含油手套及棉纱</td>
<td>危险固废</td>
<td>HW49</td>
<td>/</td>
<td>0.002</td>
<td>项目检修由外包公司完成，产生的固废由外包单位收运，项目不设固废暂存间</td>
</tr>
</tbody>
</table>

表 3-9 噪声监测结果表

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>昼间</td>
<td>夜间</td>
<td>昼间</td>
</tr>
<tr>
<td>1</td>
<td>55</td>
<td>47</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>46</td>
<td>55</td>
</tr>
<tr>
<td>标准限值</td>
<td>2 类</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>
4 扩建项目工程分析

4.1 扩建项目概况

项目名称：绵阳市餐厨废弃物资源化利用和无害化处理项目扩建 100t/d 生产线项目

建设单位：绵阳中科绵投环境服务有限公司

建设地点：绵阳市玉皇镇坚堡梁村八社（现绵阳市第二生活垃圾卫生填埋场红线范围内，垃圾填埋库区南侧）

建设性质：扩建

建设规模：项目扩建规模 100t/d

服务范围：绵阳市中心城区

劳动定员及生产制度：新增工作人员 4 人，本厂生产岗位分别为接料及预处理系统、厌氧发酵系统等其中厌氧系统实行三班四倒，其他系统实行两班三倒，全年生产天数 365 天。

4.2 扩建项目组成

扩建项目主要组成见下表 4-1。

<table>
<thead>
<tr>
<th>工程类别</th>
<th>项目组成</th>
<th>建设内容</th>
<th>依托关系</th>
</tr>
</thead>
<tbody>
<tr>
<td>主体工程</td>
<td>综合处理主厂房</td>
<td>框架结构，局部二层，占地面积：2400 m²，建筑面积：3200 m²；厂房长 60 m，宽 40 m。其中，卸料大厅长 25.2 m，宽 24 m；卸料大厅分隔出封闭式垃圾卸料平台，紧贴垃圾接料斗布置，卸料位 1 个，设 1 个卸料门。卸料平台入口与上料栈桥相连接，门前设空气幕。</td>
<td>依托现有</td>
</tr>
<tr>
<td>工程类别</td>
<td>项目组成</td>
<td>建设内容</td>
<td>依托关系</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>车间</td>
<td>由接料分拣系统和油水分离系统组成，包括卸料、分拣、破碎筛分、沉砂、压滤、三相分离、油水分离等子系统。主要构筑物为5座组合水池（依托）。主要设备为接料斗×1（新增）、接料斗×1（V=40 m³，对一期进行改造所得）、分拣机×1（依托）、沉砂机×1（依托）、三相分离机×2（新增 1台）、细料输送泵×1（新增）、1#液压站×1（新增）、2#液压站×1（新增）、制浆筛分机×1（新增）、沉降罐×1（新增）、冷却塔×1（新增）、冷却循环泵×1（新增）、接料斗集气罩×1（新增）。</td>
<td>新增+依托</td>
<td></td>
</tr>
<tr>
<td>预处理系统</td>
<td>处理量：100 吨/天主要设备为叠螺污泥脱水机×2（Q=90-150kg/h）、PAM自动泡药机×1（Q=2000L/h）、PAC自动泡药机×1（Q=500L/h）、叠螺污泥脱水机×2依托现有</td>
<td>依托现有</td>
<td></td>
</tr>
<tr>
<td>沼渣脱水系统</td>
<td>处理能力 100 m³/d主要设备为均质罐×1（依托）、厌氧发酵罐×3（新增 2个）、均质罐搅拌机×1（新增）、均质罐排渣泵×3（新增）、厌氧进料泵×2（新增）、厌氧罐搅拌机×9（新增）、沼液暂存罐×1、沉砂池×1（新增）、沉砂池出料泵×2（新增）、冷却塔×1（新增）、冷却循环泵×2（新增）</td>
<td>新增+依托</td>
<td></td>
</tr>
<tr>
<td>厌氧发酵系统</td>
<td>处理能力 300 m³/h主要设备为粗过滤器×1（Φ600×1300）、沼气储柜×1（800 m³）、增压风机×2（6.87m³/min）、换热器×1、气液分离器×1、干式脱硫塔×2（Φ2000×5500mm）、精密过滤器×1（Φ600×1300）、紧急火炬×1（600 m³/h）</td>
<td>依托现有</td>
<td></td>
</tr>
<tr>
<td>沼气净化处理系统</td>
<td>依托焚烧发电项目化验室</td>
<td>依托现有</td>
<td></td>
</tr>
<tr>
<td>辅助及贮备库</td>
<td>存放一定的设备备件、管件、阀门等。</td>
<td>依托现有</td>
<td></td>
</tr>
</tbody>
</table>
环保工程

<table>
<thead>
<tr>
<th>内容</th>
<th>建设内容</th>
<th>依托方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>通风除臭系统</td>
<td>由前端除臭（高压喷雾除臭装置）、臭气收集系统、碱洗+生物滤池+光催化氧化组合除臭组成。主要设备为雾化喷嘴×90（依托）、离心风机×2（额定风量Q=24000m³/h）、生物滤池×3（依托）、循环水池×1（依托）、循环水泵×2（依托）、碱洗塔（新增），光催化氧化除臭设备（新增）</td>
<td>新增+依托</td>
</tr>
<tr>
<td>废水处理</td>
<td>生产废水收集池一座，容积200m³，生产废水经收集后泵至垃圾填埋场渗滤液调节池，经渗滤液处理站处理后达标排放。</td>
<td>依托现有</td>
</tr>
<tr>
<td>噪声治理</td>
<td>采用低噪声设备、基础减振、消声、厂房隔声等</td>
<td>依托现有</td>
</tr>
<tr>
<td>风险防范</td>
<td>生产废水收集池兼作事故应急池</td>
<td>依托现有</td>
</tr>
</tbody>
</table>

公用工程

<table>
<thead>
<tr>
<th>内容</th>
<th>建设内容</th>
<th>依托方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>供电</td>
<td>10KV 供电线路接入，设2台500/10/0.4kV 变压器，厂用电力等级采用AC380/220V，接地型式采用TN-S系统。</td>
<td>依托现有</td>
</tr>
<tr>
<td>消防</td>
<td>厂区管网布置成环状，每间隔100米，设一处地上式消火栓，室外环网主干管径DN100mm。</td>
<td>依托现有</td>
</tr>
<tr>
<td>道路及绿化</td>
<td>路面宽度为6m和7m两种，道路采用城市型路面，绿化率30%（不含预留用地绿化）</td>
<td>依托现有</td>
</tr>
<tr>
<td>办公生活设施</td>
<td>办公、食堂依托垃圾焚烧发电项目。</td>
<td>依托现有</td>
</tr>
</tbody>
</table>

4.3 扩建项目总平面布置

该场总平面布置按处理餐厨垃圾200吨/日处理规模的生产设施及其配套设施进行布置，并已考虑本项目所需占地，已完成本项目部分土建部分。在工艺合理的条件下，充分利用余下空间。

根据园区规划和业主要求，餐厨垃圾项目主要考虑生产区，办公管理区由园
区统一考虑。

生产区主要包括：

预处理系统和沼气预处理设施。

综合处理车间利旧，物流顺畅合理，沼气预处理区布置在综合处理车间东侧，远离主要构建筑物。

本项目总用地面积为 20 亩，全厂建构筑物之间的防火间距均满足规范要求。

4.4 扩建项目工艺流程及产污环节分析

本项目采用“预处理+油水分离+厌氧发酵”工艺处理餐厨垃圾，工艺流程图见下图
餐厨垃圾收运车进场后，首先称重并记录，然后将垃圾倒入接料斗中。餐厨垃圾通过卸料、初分选，大杂进入出渣间，分选后餐厨垃圾进入破碎制浆设备，制浆后经过沉降除砂后的浆料通过除杂分离机去除部分轻飘物，之后进入浆料暂存罐将物料加热至三相分离所需要的工作温度(通常为75℃)。水相同固渣调节TS后进入厌氧均质罐，固渣也可以输出进入焚烧厂，油相进入毛油暂存罐沉降进行油水分离。

整个工艺包括以下几个工艺

（1）预处理系统
（2）厌氧发酵系统
（3）沼渣脱水处理系统
（4）沼气净化处理系统
（5）锅炉供热系统
（6）通风除臭系统

工艺流程叙述

（1）预处理系统

预处理系统工艺流程框图见下图
餐厨垃圾收运车过磅后，先将垃圾倒入接料斗中。卸下的餐厨垃圾，由接收输送系
统接收输送，并进行沥水，沥水后的固体物料提升后进入粗分选设备（分拣机）分离其
所含粗杂质（≥60mm）。分离后物料进入破碎筛分系统（制浆筛分机）进行进一步分
选（≥20mm），筛下物进入沉砂机去除砂砾后进入压滤机，压滤机筛网孔径为1mm，
压滤机分离出的固渣进入出渣间，由勾臂车转运至焚烧厂焚烧处理，液相通过加热后进
入三相分离器进行固、液、油三相分离，三相分离的固渣进入进入6#池，同4#池溢
流废水调节TS后进入厌氧发酵系统，富油废水再次进入油水分离罐进行油水分离。

主要设计参数

处理规模：100t/d（按每天运行8h计，16h的处理能力为200t/d）；
运行时间：14-16h/d；
高峰时间处理能力：8小时接收输送日处理量60%，即20吨/小时；
杂物分拣率≥90%；
液相提油率：≥80%；
固渣含水率：≤80%；
油水分离系统要求：油中含水（杂）≤3%，水中含油≤0.15%；
一级油水分离加热温度：75℃；
加热热源：采用0.6MPa蒸汽；
蒸汽消耗量：平时15t/d，高峰时期18t/d。

主要设备及参数

本工程关键设备及参数要求如下：
1）接料斗

料斗容积：40立方米，处理能力10~20t/h；
数量：1台；
进料要求：生活垃圾杂物≤20%，硬物最大尺寸≤60cm；
出料要求：沥出大部分游离水，约占进料量的30%；
材质：物料接触部分SUS304，框架Q235B。

动力方式：液压传动

设备要求：
接料斗上方设置液压动力斗盖，可方便快速启闭，减少卸料时异味外溢。
顶部设有集气罩，可有效控制臭味扩散。
接料斗底部设有两条无轴螺旋输送机，一条横向一条纵向，呈“L”形排列，横向螺旋将物料推横向螺旋，纵向螺旋将物料输送到分拣机；输送过程单螺旋输送，可保证物料不压死、不搭桥；螺旋直径为 500mm，可应对绝大多数情况的餐厨垃圾尺寸；螺旋衬板材质为 S304，更换频率低（约为 2 年一次），更换方便。

螺旋底部设有特殊设计的沥水孔，物料在输送过程中，大多数的游离水被沥出，沥水孔不易堵，只需定期清理，沥出水通过管道进入水池。

螺旋动力为液压马达，可调速，力矩大，运行稳定，故障率低；遇到特殊情况卡住时，螺旋可反转来解决问题，以保证该工段稳定运行。动力由 1#液压站提供。

本设备物料接触部位均采用 S304 不锈钢材质，外观整洁，结构结实耐用。

2）原一期工程接料斗的改造

原一期工程接料斗公称容积有 20m³，由于接料容积缓存能力过小，因此对收运系统车量的调度安排造成一定的影响，大容积车辆在倾倒完物料后，可能造成后续车辆排队倾倒的情况，从而降低收运系统的效率；另外由于收运系统的作业时间和处置时间并非完全同步，为提升收运系统的时间安排的冗余，必须提升整个接料系统的缓存能力，所以，必须进行改造，将现有料斗由 20m³ 加大到 40m³。

3）分拣机

餐厨垃圾的成分非常复杂，常常混入塑料袋、玻璃瓶、餐具、厨具、瓶盖、纸盒等杂物。为保证后续设备正常运行、产品的稳定性，需要对原料进行有效分拣，将这些无法利用、利用价值低的杂物拣出。

分拣设备以拨料筛分原理，摆腿机构将物料破袋、打散，物料在筛网上翻动前进的过程中尺寸≥60mm 的粗大杂物被筛出，杂物拣出率可达 90%以上，处理能 15t/h。所有物料接触部位均采用 S304 不锈钢材质，使用寿命长，外观好。

设备还具有处理能力大、进料要求低、防缠绕、防卡死，处理能力大，使用寿命长，运行稳定可靠，玻璃、陶瓷等易碎物品打碎少等特点。

设备与接料斗的动力由 1#液压站提供，液压站功率为 40.5kw。

设备很好地解决了我国餐厨垃圾分拣的难题，大大降低了后续处理难度，使大规模处理成为了可能，已在多个项目得到应用，效果得到普遍的认可。

4）细料输送泵

细料输送泵是一种柱塞泵，用于输送分拣机出来的细料，可泵送尺寸≤10cm 的湿料，对物料适应性强，适合中短距离的输送。设备单独配备液压站提供动力，运行稳定，
故障率低。本设备输送能力可在 8～20t/h 区间内调节选择，物料接触部位 S304 不锈钢材质。

配备的 2#液压站功率 22kw。

本设备的使用替代了传统的螺旋输送，使设备布局更具灵活性，形象更加整洁美观。

5）制浆筛分机

细料输送泵输送的物料进入制浆筛分腔内，浆液直接过筛网排出，食物类垃圾破碎制成细小颗粒与浆液同时经筛网排出，不易粉碎杂物在腔内由锤头击打从另一端排出。高速旋转主轴带动活动式锤头组，加上锤头的螺旋排列组合方式，使物料在筛网上被边破碎边前进搅动筛分。不易打碎的物质，如粗纤维等被筛出，由链板输送机往外输送。

制浆筛分机锤头选用特种钢制成，表面特殊强化耐腐蚀处理，使用寿命较长，更换方便；其他物料接触部位均采用 S304 材质。处理能力 Q=15t/h；电机功率 37kw。

6）沉砂机

处理能力：15～20t/h

功 率：1.5kW

材 质：物料接触部分 SUS304，框架 Q235B 或 SUS304。

动力方式：变频调速。

进料要求：含固率≤12%；漂浮物≤3%；最大物尺寸≤20mm；

出料要求：沉砂分离出相对比重＞1.5 的重物，如骨头、金属、贝壳等，分出率 90% 以上；

7）除杂分离机

处理能力：15t/h

功 率：37kW×2

材 质：物料接触部分 SUS304，框架 Q235B 或 SUS304。

进料要求：固形物尺寸≤20mm；硬物含量＜0.1%；硬物粒径≤1mm；

出料要求：滤液：固含物粒径≤1mm；滤渣：含水率≤70%；

设备要求：

1. 压滤机采用卧螺形式，螺距渐变，去除的轻质浮渣含水率为 68%，筛下固渣粒径＜1.0mm，为精细的有机浆料。

2. 优化筛网设计及清洗系统，有效防止设备堵塞。

3. 自动化程度高，传动系统采用变频调速，可根据物料状况，适时调整处理工艺速
度，高效节能。

8）组合加热器

浆液加热后可以有效破乳，易于油水分离。组合加热器采用蒸汽直通在线加热形式，升温迅速，热转化率高，用多少加热多少，节约热能。设备共有 2 个容积为 1.2m³ 的罐并排成一组。压滤后的浆液进入 1#加热器，被加热至 75℃后去三相分离。

组合加热器罐体为 S304 材质，并装有搅拌机，搅拌机功率为 0.55kw/台。

9）三相分离机

设备名称：三相卧式离心机

浆液中的油脂具有较高经济价值，是本项目资源化利用的重要组成部分。三相离心机把浆液加速到高速旋转，由于比重不同，浆液逐渐分层为轻、中、重三相，对应导出料分别为油相、水相、固相三相，实现固液分离、油水分离。

三相离心机是一种卧式离心机，内部材质耐磨防腐处理，进料满足条件的情况下，运行稳定，油脂得率达 90%以上，已在多个项目得到应用。

本设备单机处理能力为 Q=6～12t/h，总功率为 70kw; 共配置 2 台。

材质：物料接触部分 SUS 304，框架 Q235B。

动力方式：变频调速。

进料要求：浆液温度 ≥ 60℃；固相颗粒在 0.005～3mm；重量浓度比 ≤ 10%；固液比重差 ≥ 0.05g/cm³；

出料要求：轻相含油率 ≥ 20%，固相含水率 ≤ 72%，水相含油率 ≤ 0.15%。

10）沉降罐

容积：60m³

外形尺寸：φ4X5m

材质：物料接触部分 SUS 304，框架 Q235B。

11）1#液压传动系统

系统压力：8MPa

电机功率：40.5kW;

材质：油箱材质 Q235B；

冷却方式：水冷；

冷却水量：Q=30t/h。

12）2#液压传动系统
系统压力：10MPa
电机功率：22kW
材质：油箱材质Q235B
冷却方式：水冷
冷却水量：Q=20t/h。

主要构筑物一览表

本期工程预处理系统建构筑同一期共用已建构筑物。

主要设备一览表

预处理系统主要设备一览表见下表4-2。

<table>
<thead>
<tr>
<th>编号</th>
<th>名称</th>
<th>规格</th>
<th>功率/KW</th>
<th>单位</th>
<th>数量</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>(一) 接料分拣系统</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>接料斗</td>
<td>V=40m³</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>动力由1#液压站提供</td>
</tr>
<tr>
<td>2</td>
<td>接料斗</td>
<td>V=40m³</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>对一期工程的接料斗进行改造</td>
</tr>
<tr>
<td>3</td>
<td>分拣机</td>
<td>Q=8~15t/h</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>动力由1#液压站提供</td>
</tr>
<tr>
<td>4</td>
<td>细料输送泵</td>
<td>Q=8~20t/h</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>新增，动力2#液压站提供</td>
</tr>
<tr>
<td>5</td>
<td>1#液压站</td>
<td>10MPa</td>
<td>40.5</td>
<td>套</td>
<td>1</td>
<td>新增</td>
</tr>
<tr>
<td>6</td>
<td>2#液压站</td>
<td>8MPa</td>
<td>5.5</td>
<td>套</td>
<td>1</td>
<td>新增</td>
</tr>
<tr>
<td>7</td>
<td>制浆筛分机</td>
<td>Q=15t/h</td>
<td>37</td>
<td>台</td>
<td>1</td>
<td>新增</td>
</tr>
<tr>
<td>8</td>
<td>除杂分离机</td>
<td>Q=15t/h</td>
<td>37</td>
<td>台</td>
<td>2</td>
<td>新增</td>
</tr>
<tr>
<td>8</td>
<td>沉砂机</td>
<td>V=5m³, Q=15~20t/h</td>
<td>5.5</td>
<td>台</td>
<td>1</td>
<td>依托</td>
</tr>
</tbody>
</table>

(二) 油水分离系统

<table>
<thead>
<tr>
<th>编号</th>
<th>名称</th>
<th>规格</th>
<th>功率/KW</th>
<th>单位</th>
<th>数量</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>组合加热器</td>
<td>4×1.2m³</td>
<td>0.55</td>
<td>套</td>
<td>1</td>
<td>热源：高温蒸气</td>
</tr>
<tr>
<td>9</td>
<td>三相分离机</td>
<td>Q=6~12m³/h</td>
<td>70</td>
<td>套</td>
<td>2</td>
<td>新增+依托</td>
</tr>
<tr>
<td>10</td>
<td>5#池输送泵</td>
<td>Q=15t/h, H=30m</td>
<td>3.0</td>
<td>台</td>
<td>2</td>
<td>新增，1用1备</td>
</tr>
<tr>
<td>11</td>
<td>沉降罐</td>
<td>V=60m³</td>
<td>/</td>
<td>套</td>
<td>1</td>
<td>新增</td>
</tr>
<tr>
<td>12</td>
<td>1#齿轮泵</td>
<td>Q=30t/h, H=30m</td>
<td>5.5</td>
<td>台</td>
<td>1</td>
<td>新增</td>
</tr>
<tr>
<td>13</td>
<td>冷却塔</td>
<td>Q=50t/h</td>
<td>11</td>
<td>套</td>
<td>1</td>
<td>新增</td>
</tr>
<tr>
<td>14</td>
<td>冷却循环泵</td>
<td>Q=50m³/h, H=10m</td>
<td>5.5</td>
<td>台</td>
<td>1</td>
<td>新增</td>
</tr>
<tr>
<td>15</td>
<td>接料斗集气罩</td>
<td></td>
<td>0.3</td>
<td>套</td>
<td>1</td>
<td>新增</td>
</tr>
</tbody>
</table>

（2）厌氧发酵系统

根据物料衡算，预处理后有机浆液量为206t/d，TS浓度为7.5%，后续增加污泥协同餐厨进行厌氧，本次设计按处理能力200t/d餐厨+25吨城市生活污泥（按运行12-16h
计），TS 含量为 8% 进行设计，另考虑到特殊情况下物料的波动，TS 按 10% 校核。具体工艺参数见下表 4-3：

<table>
<thead>
<tr>
<th>序号</th>
<th>指标名称</th>
<th>单位</th>
<th>设计参数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>餐厨垃圾处理能力</td>
<td>t/d</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>设计干物质含量（TS）</td>
<td>%</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>校核干物质含量</td>
<td>%</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>容积产气率</td>
<td>m³/（m³/d）</td>
<td>≥2</td>
</tr>
<tr>
<td>4</td>
<td>设计有机负荷</td>
<td>kg . TS/m3.d</td>
<td>≥ 2.0</td>
</tr>
<tr>
<td>5</td>
<td>发酵罐温度</td>
<td>℃</td>
<td>35±2</td>
</tr>
<tr>
<td>6</td>
<td>停留时间</td>
<td>d</td>
<td>30-35</td>
</tr>
<tr>
<td>7</td>
<td>发酵罐 pH</td>
<td></td>
<td>6.8~7.8</td>
</tr>
<tr>
<td>8</td>
<td>单位有机质产气率</td>
<td>l/kg . Ts</td>
<td>≥550</td>
</tr>
<tr>
<td>9</td>
<td>餐厨有机降解率</td>
<td>%</td>
<td>≥70%</td>
</tr>
</tbody>
</table>

厌氧发酵系统工艺流程及物料衡算见下图

工艺各单元设计
（1）均质池
预处理后有机浆料泵送入均质池中，其作用为酸化、缓存、均质、除砂，为后续厌
氧发酵罐提供稳定均匀的物料。池内设置顶部中央搅拌器，可对罐内物料进行搅拌，实现匀浆，底部设置锥型排砂斗。

主要设计参数如下：单体容积：300 m³，数量：1 座；材质：钢筋混泥土罐，抗渗处理；物料停留时间：1~3 d；运行时间：24 h/d

均质罐搅拌机
功能：对均质罐内物料进行充分搅拌、均质。
安装方式：罐顶中心安装
功率：11 kW
数量：1 台

均质罐排砂泵
功能：均质罐排砂
流量：5 m³/h
扬程：20 m
功率：2.2 kW
数量：2 台，1 用 1 备

厌氧罐进料泵
功能：将物料泵入厌氧罐内
流量：50 m³/h
扬程：40 m
功率：18.5 kW
数量：2 台，1 用 1 备

（2）厌氧发酵罐

厌氧发酵罐是厌氧发酵系统中最重要的装置，本工艺厌氧发酵罐为完全混合式圆柱形发酵罐，罐体为封闭式碳钢拼装罐，内部保持轻微的过压状态；发酵罐上部安装有浮渣破渣与去除装置，对产生的浮渣进行去除；底部安装有沉渣去除装置，对产生的沉渣进行去除。此外，顶部还设有安全阀、观察检测窗等设备。整个餐厨垃圾处理厂设置发酵罐 1 个，每个罐体体积为 3500 m³，直径 18 m，高 18 m，餐厨垃圾在发酵罐内的停留时间为不低于 30d。具体设计参数如下：

单座体积：3500 m³
罐体尺寸：φ18*18 m（含气室高度）
数量：3 座

发酵罐材质：封闭式碳钢拼装罐，内衬不锈钢 316L 材质钢板防腐，外壁保温处理

容积产气率：≥1.5m³/m³.d（整个厌氧系统）

有机负荷：≥2.0 kg VS/m3.d

停留时间：≥30d

有机降解率：≥75%（整个厌氧系统）

单位有机物产沼气能力：≥550 L/kg VS（整个厌氧系统）

罐内物料温度：35±2℃

罐内物料 pH 值：6.8~7.8

运行时间：24 h/d

1）进出料及排渣控制

进料采用泵送，每天分多次进料，每天累计进料时间 10 小时。厌氧罐的出料溢流至沼液暂存罐。

定期将厌氧罐底部的渣排至沼液暂存池（原一期工程）。针对餐厨垃圾物料性质，设置厌氧罐顶部出料器，定期排出罐内浮渣。

2）工艺参数控制

发酵罐内部设置检测装置对发酵罐内部压力、甲烷以及二氧化碳含量等指标进行测定和监控。整个发酵过程通过自动控制系统对发酵罐的进料、出料、搅拌频率、pH 值、温度等参数进行在线检测和监控。此外对发酵液定期取样，对更多的指标（挥发酸、氨氮等）进行实验室测试，测试结果及时反馈，以便操作人员及时调整发酵罐运行参数，保证厌氧消化过程的持续和稳定。

3）反应器布料搅拌系统

厌氧反应器搅拌机采用侧式机械搅拌器，搅拌系统根据厌氧发酵罐定型设计，搅拌器驱动装置采用变频电机，根据罐内物料混合情况自动调节搅拌机转速。安装和拆卸在罐顶进行，维护和维修简便。罐内搅拌结构为可拆卸组装结构，通过罐顶预留的检修口逐步提出，实现不清罐维修，最大程度的保证厌氧反应器的连续稳定运行。

此外为有效破除浮渣与沉渣，于罐顶及罐底设置潜水推流搅拌器，通过组合搅拌方式实现浮渣与沉渣的排除，潜水推流搅拌器间歇运行：共设计三台搅拌器：22KW×3

4）温度控制调节系统

本工艺为中温厌氧发酵工艺，发酵罐内部温度需维持在 35℃左右，经物料衡算，本
工程罐体通过保温措施后，无需考虑换热措施即能满足中温厌氧发酵所需温度。

经过预处理的餐厨有机料液进入均质罐，均质罐设有搅拌机进行搅拌均质。经均质后的有机料液经由厌氧进料泵提升入厌氧发酵反应器，中温厌氧发酵罐的设计停留时间为 30 天，经过 CSTR 厌氧发酵罐充分发酵后产生的沼液泵入沼液暂存罐，调节固液分离单元进料。

为了保证厌氧发酵系统温度稳定，必须对系统实施整体保温措施。系统整体保温包括管道、阀门保温；厌氧发酵罐体的保温。对厌氧发酵系统采用 80mm 厚保温棉进行保温，保温层外加饰面金属板做保护层。

5）pH 控制系统

pH 值是餐厨垃圾厌氧消化最重要的参数之一，其最适宜范围为 6.5～7.5，当有机负荷增大，发酵罐内整体出现酸化时可以通过外加碱性物质，调节 pH 值。具体做法是：当在线监控的 pH 值低至 6.5 左右时，就要严密注意挥发性脂肪酸（VFA）的含量，如果此时伴行 VFA 的大幅度增加，就需要减少进料负荷，添加外源碱度或促进剂等，使得发酵液 pH 值恢复至 7 以上。

主要设备：

厌氧罐侧搅拌机

功能：对厌氧罐内物料进行充分搅拌，加强发酵液与微生物之间的充分接触，提高产气率。

安装方式：罐侧均布安装
功率：22 kW
数量：3 台

厌氧罐安全保护器

功能：当罐内出现正压或负压，并超过限定值时，保护厌氧罐
数量：2 套

<table>
<thead>
<tr>
<th>主要设备一览表</th>
</tr>
</thead>
<tbody>
<tr>
<td>厌氧发酵系统主要设备一览表见下表 4-4。</td>
</tr>
</tbody>
</table>

表 4-4 厌氧发酵单元设备

<table>
<thead>
<tr>
<th>序号</th>
<th>项目名称</th>
<th>规格型号</th>
<th>单位</th>
<th>数量</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>均质罐</td>
<td>Vn=300m³，地下钢结构罐体</td>
<td>座</td>
<td>1</td>
<td>依托</td>
</tr>
<tr>
<td>2</td>
<td>均质罐搅拌机</td>
<td>非标设备，Pn=11kW</td>
<td>台</td>
<td>1</td>
<td>新增</td>
</tr>
</tbody>
</table>
（3）沼渣脱水处理系统

厌氧罐产生的沼液自流进入沼液暂存池，经短暂停留后，通过螺杆泵泵入卧式螺旋沉降离心脱水机进行固液分离，固液分离后的液相进入厌氧发酵罐，进入污水处理系统进行处理，脱水后沼渣进入垃圾焚烧发电厂焚烧。

原一期工程沼渣脱水处理系统的生产能力考虑了二期工程的需要，本期工程不再新建。

（4）沼气净化处理系统

本期工程不再新建，沼气进入沼气系统进行深度资源化，提纯为生物天然气销售。

（5）锅炉供热系统

餐厨项目所消耗蒸汽来源于焚烧发电厂，本项目不需要建设锅炉系统。

（6）通风除臭系统

项目由原来的生物滤池除臭改为碱洗+生物滤池+光催化氧化组合除臭。碱洗塔用于除去二氧化硫、硫化氢等杂质，在最后加入光催化装置以确保臭气达标排放。该装置利用人工紫外线光波作为能源，配合纳米 TiO₂催化剂，废臭气体经过处理后可达到净化的理想效果。在光催化氧化反应中，通过紫外光照射在纳米 TiO₂催化剂上，纳米 TiO₂ 催化剂吸收光能产生电子跃进和空穴跃进，经过进一步的结合产生电子空穴对，与废气表面吸附的水份(H₂O)和氧气(O₂)反应生成氧化性很活泼的羟基自由基(OH⁻)和超氧离子自由基(O₂⁻、O⁻)。能够把各种有机废气如醛类、苯类、氨类、氮氧化物、硫化物以及其它 VOC 类有机物及无机物在光催化氧化的作用下还原成二氧化碳(CO₂)、水(H₂O)以及其它无毒无害物质，经过净化之后的废气分子被活化降解，臭味也同时消失了，起
到了废气除臭的作用。

光催化氧化除臭系统原理示意图

3.2.2.5 扩建项目产污环节及治理措施

施工期

本项目主体工程依托原有一期，主要为新增一套日处理 100 吨餐厨废弃物处理生产线，施工期间仅有少量设备安装时产生的噪声和扬尘，在安装前洒水可有效减少扬尘，噪声经过墙体衰减，对声环境影响很小。

运营期

a. 大气

本项目产生的废气主要为餐厨废弃物处理环节产生的恶臭气体。恶臭气体的主要成分为 H2S 和 NH3，此外还有少量的甲胺、甲基硫等，为防止臭气污染空气、危害人的健康，必须采用除臭措施进行治理，严格控制臭气扩散带来的环境污染。根据设计方案，项目拟采取植物液喷雾和碱洗+生物滴滤池+光催化氧化组合的除臭方式，臭气经处理后由排气筒达标排放。

b. 废水

本项目运营期水污染源包括餐厨废弃物处理工艺厌氧发酵系统产生的废水、地面、车辆及设备冲洗废水。厌氧发酵系统废水的主要特点是 COD、BOD5、NH3-N 指标高，可生化性较好。上述废水通过管道输送至垃圾焚烧发电厂污水处理设施进行处理。污水处理达到《生活垃圾填埋场污染控制标准》（GB16889-2008）中表 2 标准后排放。
c. 噪声

项目运营期噪声源主要为各种生产处理设备的运行噪声，包括接料机、分拣机、破碎筛分机、输送机等，以及公用辅助设备的水泵、引风机、空压机和冷却塔等。通过选用低噪声设备、管道接口采用柔性联结以及厂房隔声等降噪措施，可使厂界噪声满足《工业企业厂界环境噪声排放标准》（GB12348-2008）2类标准限值。

d. 固废

项目运营期产生的固体废物主要包括餐厨废弃物处理工艺中分拣环节产生木塑料杂物、压榨环节产生的固相物、厌氧发酵最后产生的沼渣、废脱硫剂以及职工生活垃圾，设立危废间对其保管存放。

3.2.2.6 扩建项目新增主要生产设备

扩建项目主要新增设备见下表4-5。

<table>
<thead>
<tr>
<th>编号</th>
<th>名称</th>
<th>规格</th>
<th>功率/KW</th>
<th>单位</th>
<th>数量</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>一</td>
<td>预处理系统</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(一)</td>
<td>接料分拣系统</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>接料斗</td>
<td>V=40m³</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>动力由1#液压站提供</td>
</tr>
<tr>
<td>2</td>
<td>接料斗</td>
<td>V=40m³</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>对一期工程的接料斗进行改造</td>
</tr>
<tr>
<td>3</td>
<td>细料输送泵</td>
<td>Q=8~20t/h</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td>动力由2#液压站提供</td>
</tr>
<tr>
<td>4</td>
<td>1#液压站</td>
<td>8MPa</td>
<td>40.5</td>
<td>套</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2#液压站</td>
<td>10MPa</td>
<td>22</td>
<td>套</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>制浆筛分机</td>
<td>Q=15t/h</td>
<td>37</td>
<td>台</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>除杂分离机</td>
<td>Q=15t/h</td>
<td>37</td>
<td>台</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(二)</td>
<td>油水分离系统</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>组合加热器</td>
<td>4×1.2m³</td>
<td>0.55</td>
<td>套</td>
<td>1</td>
<td>热源：高温蒸气</td>
</tr>
<tr>
<td>9</td>
<td>三相分离机</td>
<td>Q=6~12m³/h</td>
<td>70</td>
<td>套</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5#池输送泵</td>
<td>Q=15t/h, H=30m</td>
<td>3.0</td>
<td>台</td>
<td>2</td>
<td>1用1备</td>
</tr>
<tr>
<td>11</td>
<td>沉降罐</td>
<td>V=60m³</td>
<td></td>
<td>套</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1#齿轮泵</td>
<td>Q=30t/h, H=30m</td>
<td>5.5</td>
<td>台</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>冷却塔</td>
<td>Q=50t/h</td>
<td>11</td>
<td>套</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>冷却循环泵</td>
<td>Q=50m³/h, H=10m</td>
<td>5.5</td>
<td>台</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>接料斗集气罩</td>
<td></td>
<td>0.3</td>
<td>套</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>二</td>
<td>厌氧发酵系统</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>均质罐搅拌机</td>
<td>非标设备，Pn=11kW</td>
<td>/</td>
<td>台</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
4.5 扩建项目主要原辅材料

（1）主要原辅料

项目主要原材料消耗见下表 4-6。

<table>
<thead>
<tr>
<th>表 4-6 项目主要原辅材料及能源</th>
<th>类别</th>
<th>名称</th>
<th>主要成分</th>
<th>数量</th>
<th>存储方式</th>
<th>来源及运输方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料</td>
<td>餐厨垃圾</td>
<td>有机物+油脂，</td>
<td>3.65 万 吨/年</td>
<td>收料斗</td>
<td>绵阳市环卫处收运</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>辅料</td>
<td>片碱</td>
<td>主要成分：NaOH</td>
<td>15 吨/年</td>
<td>袋装</td>
<td>国内，车运</td>
<td>用于厂区内除臭系统</td>
<td></td>
</tr>
<tr>
<td>絮凝剂</td>
<td>主要成分：PAM 聚</td>
<td>10 吨/年</td>
<td>丙烯酰胺</td>
<td>袋装</td>
<td>国内，车运</td>
<td>用于厌氧发酵系统污泥脱水</td>
<td></td>
</tr>
<tr>
<td>污泥</td>
<td>/</td>
<td>9125 吨/年</td>
<td>收料斗</td>
<td>国内，车运</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>能源</td>
<td>水</td>
<td>/</td>
<td>27272.8 吨/年</td>
<td>绵阳市政自来水供水</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>电</td>
<td>/</td>
<td>300 万 kWh</td>
<td>10kv 供电线路接入</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（2）原辅料及能源清洁性分析

本项目主要原辅材料为餐厨垃圾、片碱、絮凝剂等，所用原辅材料均不含汞、铅、镉、砷等污染物。本项目使用的能源为电源、自来水，均为清洁能源，不涉及燃煤等高污染能源。
因此，本项目在原辅材料的获取和使用过程中对环境的影响较小，基本符合清洁生产的原则。

（3）主要原辅材料理化性质、毒性毒理

主要原辅材料理化性质见表 4-7。

<table>
<thead>
<tr>
<th>物质名称</th>
<th>分子式</th>
<th>理化性质</th>
<th>燃烧爆炸性</th>
<th>毒性理性</th>
</tr>
</thead>
<tbody>
<tr>
<td>氢氧化钠</td>
<td>NaOH</td>
<td>纯品为白色不透明固体，易潮解，碱性腐蚀品，分子量为 40.01，蒸汽压 0.13kPa(739°C)，沸点 318.4°C，沸点 1390°C。易溶于水、乙醇、甘油，不溶于丙酮，性质稳定。</td>
<td>危险特性：本品不会燃烧，遇水和水蒸气大量放热，形成腐蚀性溶液。与酸发生中和反应并放热，具有强腐蚀性。燃烧（分解）产物：可能产生有毒的每性烟雾。</td>
<td>不燃，无特殊燃爆特性</td>
</tr>
<tr>
<td>碳酸钠</td>
<td>Na₂CO₃</td>
<td>白色粉末或细颗粒（无水纯品），味涩，有吸湿性。熔点 851°C，相对密度（水=1）2.53，易溶于水，不溶于乙醇、乙醚等。</td>
<td>不燃，无特殊燃爆特性</td>
<td>大鼠腹膜腔 LD50:11000mg/kg</td>
</tr>
<tr>
<td>尿素</td>
<td>CH₄N₂O</td>
<td>白色结晶或粉末，有氨的气味。熔点 132.7°C，相对密度（水=1）1.335，溶于水，甲醇、乙醇，微溶于乙醚、氯仿、苯。</td>
<td>不燃，无特殊燃爆特性</td>
<td>大鼠腹膜腔 LD50:11000mg/kg</td>
</tr>
<tr>
<td>硫化氢</td>
<td>H₂S</td>
<td>分子量为 34.076, 标准状况下是一种易燃的酸性气体，无色，低浓度时有臭鸡蛋气味，有剧毒。硫化氢是一种重要的化学原料。硫化氢为无色气体，有臭鸡蛋味，其水溶液为氢硫酸。分子量为 34.08，蒸汽压为 2026.5kPa/25.5°C，闪点为 <50°C，沸点是-85.5°C，沸点是-60.4°C，相对密度为（空气=1）1.19。微溶于水，亦溶于醇类、石油溶剂和原油。燃点为 292°C。</td>
<td>不燃</td>
<td></td>
</tr>
<tr>
<td>光催化剂</td>
<td>TiO</td>
<td>白色固体或粉末状的两性氧化物，分子量为 79.9，是一种白色无机颜料，具有无毒、最佳的不透明性、最佳白度和光亮度，被认为是现今世界上最好的一种白色颜料。</td>
<td>不燃</td>
<td>LD50：无资料 LC50：无资料</td>
</tr>
</tbody>
</table>
4.7 扩建项目污染物产生、治理和排放情况

4.7.1 物料平衡

4.7.1.1 物料平衡

本项目物料平衡见下表 4-8。

表 4-8 本项目物料平衡表

<table>
<thead>
<tr>
<th>进料（t/d）</th>
<th>出料（t/d）</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料名称</td>
<td>数量</td>
</tr>
<tr>
<td>餐厨垃圾</td>
<td>100</td>
</tr>
<tr>
<td>污泥</td>
<td>25</td>
</tr>
<tr>
<td>合计</td>
<td>125</td>
</tr>
</tbody>
</table>

4.7.1.2 水平衡

扩建项目用水包括生产过程补充用水、设备清洗用水、车辆冲洗用水，各详细见下表 4-9、4-10。

表 4-9 扩建项目用水及排水量统计

<table>
<thead>
<tr>
<th>用水项目</th>
<th>日用水量（m³/d）</th>
<th>日废水量（m³/d）</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>预处理系统用水</td>
<td>0.8</td>
<td>67.7（餐厨垃圾带水66.9）</td>
<td></td>
</tr>
<tr>
<td>喷雾除臭系统用水</td>
<td>0.1</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>滤池除臭系统用水</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>设备、车间地坪及垃圾车辆冲洗</td>
<td>3.1</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>冷却循环水补充水</td>
<td>0</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>沼渣脱水配药（絮凝）用水</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>小计</td>
<td>4.1</td>
<td>69.6</td>
<td></td>
</tr>
<tr>
<td>厂区道路及地坪洒水</td>
<td>0</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>绿化</td>
<td>0</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>小计</td>
<td>0</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>员工生活用水</td>
<td>0.08</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>总计</td>
<td>4.18</td>
<td>69.67</td>
<td></td>
</tr>
</tbody>
</table>

表 4-10 扩建后总体项目用水及排水量统计

<table>
<thead>
<tr>
<th>用水项目</th>
<th>日用水量（m³/d）</th>
<th>日废水量（m³/d）</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>预处理系统用水</td>
<td>35.6</td>
<td>169.4（餐厨垃圾带水 166.9）</td>
<td></td>
</tr>
<tr>
<td>项目描述</td>
<td>使用量</td>
<td>/ 用量</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>喷雾除臭系统用水</td>
<td>0.4</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>滤池除臭系统用水</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>设备、车间地坪及垃圾车辆冲洗</td>
<td>8.1</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>冷却循环水补充水</td>
<td>3</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>沼渣脱水配药（絮凝）用水</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>小计</td>
<td>65.3</td>
<td>194.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>项目描述</th>
<th>使用量</th>
<th>/ 用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>厂区道路及地坪洒水</td>
<td>4</td>
<td>/</td>
</tr>
<tr>
<td>绿化</td>
<td>5</td>
<td>/</td>
</tr>
<tr>
<td>小计</td>
<td>9</td>
<td>/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>项目描述</th>
<th>使用量</th>
<th>/ 用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>员工生活用水</td>
<td>0.42</td>
<td>0.37</td>
</tr>
<tr>
<td>总计</td>
<td>74.72</td>
<td>194.77</td>
</tr>
</tbody>
</table>

扩建项目水平衡图见下图

扩建后全厂水平衡图见下图
4.7.2 污染源分析

4.7.2.1 废气污染源分析

1）恶臭气体

本项目运营期恶臭气体来源主要为餐厨废弃物处理环节。餐厨废弃物处理过程中恶臭气体主要来自综合处理车间接料斗、分拣机、筛分机、输送机等设备处，以及卸料大厅、组合水池（地上式）和污泥脱水等作业区；恶臭气体的主要成分为H₂S和NH₃，此外还有少量的甲胺、甲基硫等。这些气体挥发性较大，易扩散在大气中，而且部分气体有毒、刺激性气味。

a 有组织恶臭气体

餐厨垃圾预处理和厌氧发酵产生的恶臭气体（主要为NH₃、H₂S），恶臭会使使人产生不快感，遭受恶臭污染会使居民的生活，降低工作效率，严重时会使人恶心、呕吐，甚至会引发某些疾病。本项目整个餐厨预处理车间为负压状态，车间内的恶臭通过引风机的作用，由收集管道进入碱洗塔对废气中油脂、含酸性成分的恶臭气体进行处理，再经过生物滤池进行生物除臭处理，为确保臭气达标排放，最后在系统的末端设置光催化氧化除臭装置进行最后一级处理。
本次扩建项目臭气处理部分新增碱洗和光催化氧化除臭部分，餐厨处理规模与一期相同均为 100t/d，根据建设单位已有的验收监测数据以及一期环评臭气产生情况，类比一期项目的产污浓度，餐厨垃圾资源化利用过程氨和硫化氢经植物液喷淋预除臭后的产生源强分别为：NH$_3$: 0.089kg/h，H$_2$S: 0.007kg/h。另外，类比自贡澍昇废弃物回收有限公司蓝德环保科技集团股份有限公司自贡市餐厨垃圾处理项目环境影响报告书（受理公示链***)，得出本项目的臭气浓度产生源强为：2500（无量纲，计算依据：类比项目的处理规模为 250t/d，本项目为 100t/d，本项目臭气浓度产生源强按类比项目的 50%计）

类比的项目臭气污染物产生源强见下表 4-11。

表 4-11 类比的一期项目臭气污染物产生源强

<table>
<thead>
<tr>
<th>资料来源</th>
<th>规模</th>
<th>有组织（按 90%收集率计）</th>
<th>臭气浓度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t/d</td>
<td>kg/h</td>
<td></td>
</tr>
<tr>
<td>一期项目及自贡市餐厨垃圾处理项目</td>
<td>100</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>二期扩建后项目处理区</td>
<td>250</td>
<td>0.0063</td>
<td>4500</td>
</tr>
</tbody>
</table>

二期扩建后，项目恶臭气体经植物液喷淋预除臭，采用“碱洗+生物滴滤池+光催化氧化”组合装置除臭，处理效率按 90%计。

类比上表，可知二期项目有组织恶臭气体产生及排放情况如下表 4-12、4-13。

表 4-12 有组织恶臭气体污染物产生消耗

<table>
<thead>
<tr>
<th>污染源</th>
<th>废气名称</th>
<th>废气量 m3/h</th>
<th>有组织</th>
<th>产生浓度 mg/m3</th>
<th>产生速率 kg/h</th>
<th>产生量 t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>综合处理区</td>
<td>NH$_3$</td>
<td>60000</td>
<td>1.3</td>
<td>0.08</td>
<td>0.701</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H$_2$S</td>
<td></td>
<td>0.105</td>
<td>0.0063</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>臭气浓度</td>
<td></td>
<td>2250</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>

表 4-13 有组织恶臭气体污染物排放情况

<table>
<thead>
<tr>
<th>污染源</th>
<th>废气名称</th>
<th>废气量 m3/h</th>
<th>有组织</th>
<th>排放浓度 mg/m3</th>
<th>排放速率 kg/h</th>
<th>排放量 t/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>综合处理区</td>
<td>NH$_3$</td>
<td>60000</td>
<td>0.13</td>
<td>0.008</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H$_2$S</td>
<td></td>
<td>0.0105</td>
<td>0.0063</td>
<td>0.0055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>臭气浓度</td>
<td></td>
<td>225</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>
二期扩建后，总体项目有组织恶臭气体产排情况如下表 4-14。

表 4-14 扩建后总体项目有组织恶臭气体产生排放情况

<table>
<thead>
<tr>
<th>污染源名称</th>
<th>产生情况（恶臭气体为植物液喷雾预除臭后）</th>
<th>排放情况（恶臭污染物排放标准（15m排气筒））</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>浓度 (mg/m³) 速率 (kg/h) 废气量 (m³/h)</td>
<td>浓度 (mg/m³) 速率 (kg/h) 废气量 (m³/h)</td>
</tr>
<tr>
<td>NH₃</td>
<td>2.6 0.16 60000</td>
<td>0.26 0.016 60000</td>
</tr>
<tr>
<td>H₂S</td>
<td>0.21 0.0126</td>
<td>0.021 0.00126</td>
</tr>
<tr>
<td>臭气浓度</td>
<td>4500 /</td>
<td>450 /</td>
</tr>
</tbody>
</table>

综上可知，本项目建成后总体项目有组织排放情况为：NH₃：0.016kg/h，H₂S：0.00126kg/h，符合《恶臭污染物排放标准》（GB14554-93）表 2 中限值要求。

b 无组织恶臭气体

本项目车间密闭，大门使用空气幕，无组织恶臭气体产生主要是卸料厂以及预处理车间产生，约占整个预处理恶臭气体产生量的 10%，风机收集率按 90%，无组织恶臭气体产生情况见下表 4-15。

表 4-15 扩建后总体项目无组织恶臭排放情况

<table>
<thead>
<tr>
<th>污染源</th>
<th>污染物名称</th>
<th>产生速率（植物液喷雾除臭后）</th>
<th>排放速率</th>
<th>恶臭污染物排放标准(mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>综合处理区</td>
<td>NH₃</td>
<td>0.018 0.018</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂S</td>
<td>0.0014 0.0014</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>臭气浓度</td>
<td>/</td>
<td>/</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

综上可知，本项目产生的有组织废气包括卸料工序和预处理车间产生的恶臭气体，无组织废气主要是卸料工序产生的未被收集到的少量恶臭气体污染物，恶臭气体无组织排放符合《恶臭污染物排放标准》（GB14554-93）表 1 中限值要求。

扩建项目产生的有组织废气和无组织废气总表见下表 4-16：

表 4-16 扩建项目废气污染物产排情况汇总表

<table>
<thead>
<tr>
<th>排放源类</th>
<th>污染物名称</th>
<th>产污工序风机风量</th>
<th>产生浓度</th>
<th>产生量</th>
<th>排放浓度</th>
<th>排放量</th>
<th>排放源参数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(m³/h) (mg/m³) (t/a)</td>
<td></td>
<td></td>
<td>(mg/m³)</td>
<td>(t/a)</td>
<td></td>
</tr>
</tbody>
</table>
三、治理措施

本项目处理恶臭气体采用“植物液喷淋+碱洗+生物滴滤池+光催化氧化”组合除臭。先采用植物除臭液吸附空气中的异味分子，使吸附的异味分子立体结构发生改变，变得不稳定，将臭气分子变成无毒无味的分子，如水、无机盐等，接着采用碱液如氢氧化钠溶液、碳酸钠、氢氧化钙溶液、氨水等作为硫化氢的吸收液，通过各类传质设备如填料塔，喷淋塔等进行反应，在进入生物滴滤池，生物滴滤池中微生物固定附着在多孔性介质填料表面，并使污染物在填料床层中进行生物处理，挥发性有机污染物等吸附在空隙表面，被空隙中的微生物所耗用，利用微生物新陈代谢生命活动将废气中的有害物质转变为简单的无机物及细胞质并降解成 CO₂、H₂O 和中性盐，为了确保达到高效的处理效率，在最后进行光催化氧化除臭，利用人工紫外线光波作为能源，配合纳米 TiO₂ 催化剂，废臭气体经过处理后可达到净化的更理想的效果。

2）沼气

a. 产生情况

厨余垃圾厌氧消化过程中将产生沼气，类比项目一期环保验收报告，扩建项目厌氧消化产生的沼气约 6000m³/d，其中甲烷含量约为 60%。

b. 治理措施

根据《餐厨垃圾处理技术规范》（CJJ184-2012）中“对厌氧产生的沼气应进行有效利用或处置，不得直接排入大气”的规定，本项目依托原一期现有沼气净化系统，首先通过砾石过滤器将沼气中的部分液态水和大颗粒的杂质除去，然后直接进入 800m³的双皮膜储气柜的缓冲储存，经过罗茨风机增压后通过脱硫系
统将沼气中的 H₂S 降至 100ppm 以内，脱硫后的沼气再经过精密过滤器将沼气的粉尘降至 3μm，再经冷干机及气液分离器降温除水后送入“绵阳中科绵投资源循环利用基地沼气综合利用项目”（立项备案文件见附件）提纯成为生物天然气后进行销售。

4.7.2.2 废水污染源分析

本项目厂区实行雨、污分流。生产过程产生的脱水系统废水以及设备清洗、车辆清洗废水、地面冲洗水、均经过污水管网排入垃圾填埋场渗滤液处理站处理后排放。

1. 脱水系统废水

本项目厌氧发酵产生沼液、项目生产过程补充的自来水、餐厨垃圾本身含有的废水均通过脱水系统分离出来，作为废水进入垃圾填埋场渗滤液处理站处理。

本项目一期厌氧发酵废水排量 101.7m³/d，二期扩建后厌氧发酵废水量预计 169.4m³/d，主要成分为有机类污染物，COD、BOD₅、NH₃-N 指标高，可生化性较好。

2. 冲洗废水

本项目在原一期基础上安装设备，不新增地面冲洗废水。二期部分生产装置需要定期清洗，一期废水产生量为 5m³/d，扩建后约为 6.8m³/d，主要污染物为 COD、BOD₅、NH₃-N、SS 等。

3. 生活污水及化验废水

项目办公、食堂、化验均依托垃圾焚烧发电项目公辅设施，产生的办公、生活污水主要污染物为 COD、BOD₅、NH₃-N、SS，污水量约 0.37m³/d，排入填埋场渗滤液处理站处理达《生活垃圾填埋场污染控制标准》(GB16889-2008) 中表 2 标准后排入下游巩家沟。

4. 初期雨水

初期雨水中含有部分残留在地面的餐厨废弃物成份，直接排入雨水沟将对附近水体造成污染，项目初期雨水主要成份为 COD、BOD、NH₃-N、SS 等，须与生产废水一同汇总后处理，不得随意外排。

初期雨水取项目装置区及库区在降水时前 15 分钟的降水量。根据《给水排水设计手册》各地区暴雨强度统计值进行分析和，采用绵阳地区暴雨强度，
公式如下:

\[q = 798 \left(1 + 0.7201 \log P \right) / (t+5)^{0.528} \]

\(q \): 设计暴雨强度（L/s·ha）

\(p \): 设计暴雨重现期（年），取值范围 1-3，本次计算取 2

\(t \): 地面集水时间（分钟），取 15 分钟

雨水设计流量的计算:

\[Q = \Phi q F \]

\(Q \): 雨水设计流量（L/s）

\(q \): 设计暴雨强度（L/s·ha）

\(\Phi \): 径流系数，本项目取 0.9

\(F \): 汇流面积（ha）

根据本项目装置区的平面布置，装置区汇水面积约 0.6 ha，经按上述公式计算，本项目的初期雨水量为 163 m³/次。

装置区设环状雨水沟，雨水沟与综合处理车间冲洗水沟联通，下雨时，由专人关闭装置区雨水沟向厂外排水的阀门，打开厂区雨水沟与综合处理车间冲洗水沟的联通阀，初期雨水与车间冲洗等生产废水一同排入生产废水收集池，并泵至垃圾填埋场渗滤液调节池，15 分钟后，打开雨水沟向厂外排水的阀门，关闭厂区雨水沟与综合处理车间冲洗水沟的联通阀。

项目设置 200 m³ 生产废水收集池一座，初期雨水进入收集池后随即排入填埋场渗滤液处理站处理达《生活垃圾填埋场污染控制标准》（GB16889-2008）中表 2 标准后排入下游 Awsa 沟。

5. 渗滤液处理站污水处理工艺

渗滤液经过调节池调节水质水量后，由提升泵提升，进入厌氧池，经过厌氧微生物消化作用后进入 MBR 膜-生物反应器中的缺氧池。在缺氧池，硝酸盐通过反硝化作用还原成氮气从水中溢出，同时补充硝化过程中消耗的碱度。缺氧池污水自流入好氧池，利用好氧微生物的作用，使残余的可生物降解有机物进一步分解去除，使氨氮在亚硝酸和硝酸细菌的作用下，形成硝酸根离子，使氨氮污染物得以控制，不能生物降解的有机污染物在抽吸泵的作用下，随水流进入中间水池，中间水池出水经加压送至反渗透装置进一步处理，出水达标排放。反渗透浓水和
MBR、厌氧等产生的污泥均经污泥存储池回灌至垃圾填埋场。

垃圾填埋场渗滤液处理站工艺流程示意图如下：

垃圾填埋场渗滤液处理站工艺流程示意图

垃圾填埋场渗滤液处理站设计进水质如下表 4-17：

<table>
<thead>
<tr>
<th>项目</th>
<th>COD</th>
<th>BOD₅</th>
<th>NH₃-N</th>
<th>TN</th>
<th>SS</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>数值（mg/l）</td>
<td>10000</td>
<td>5000</td>
<td>2500</td>
<td>3000</td>
<td>500</td>
<td>6-9</td>
</tr>
</tbody>
</table>

表 4-18 垃圾填埋场渗滤液处理站设计出水质要求

<table>
<thead>
<tr>
<th>项目</th>
<th>COD</th>
<th>BOD₅</th>
<th>NH₃-N</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>数值（mg/l）</td>
<td>50</td>
<td>7.5</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

本项目废水先经渗滤液调节池调节水质，通常调节池内渗滤液贮存量<8000m³，本项目废水量为194.77m³/d，参照餐厨废弃物资源化利用和无害化处理一期项目环评预测各污染物浓度运营期废水具体产生情况见下表 4-18、4-19。

表 4-19 项目运营期各类废水产生情况一览表

<table>
<thead>
<tr>
<th>废水类别</th>
<th>流量（m³/d）</th>
<th>污染物浓度（mg/L，pH除外）</th>
<th>pH</th>
<th>COD</th>
<th>BOD₅</th>
<th>NH₃-N</th>
<th>SS</th>
<th>排放去向</th>
</tr>
</thead>
<tbody>
<tr>
<td>生产废水</td>
<td>187.77</td>
<td>6-9</td>
<td>19000</td>
<td>7600</td>
<td>1400</td>
<td>1900</td>
<td>18331</td>
<td>排入垃圾填埋场渗滤液处理站处理达标后排放。</td>
</tr>
<tr>
<td>冲洗废水</td>
<td>6.8</td>
<td>6-9</td>
<td>4000</td>
<td>300</td>
<td>30</td>
<td>200</td>
<td>600</td>
<td>400</td>
</tr>
<tr>
<td>除臭系统废水</td>
<td>0.2</td>
<td>6-9</td>
<td>600</td>
<td>400</td>
<td>50</td>
<td>200</td>
<td>350</td>
<td>200</td>
</tr>
<tr>
<td>混合后</td>
<td>194.77</td>
<td>6-9</td>
<td>18331</td>
<td>7338</td>
<td>1350</td>
<td>1838</td>
<td></td>
<td>1350</td>
</tr>
</tbody>
</table>

表 4-20 项目废水污染物产生浓度和产生量

<table>
<thead>
<tr>
<th>污染</th>
<th>产生量</th>
<th>COD₅</th>
<th>BOD₅</th>
<th>NH₃-N</th>
<th>SS</th>
</tr>
</thead>
</table>

67
4.10.3 噪声污染源强确定

本工程噪声源主要有餐厨垃圾运输车、破碎机、分选机、空压机、真空泵、冷却塔等。

场内机器设备噪声在选型上均控制在85dB以下，设计对产生噪声的设备根据实际情况采取减振、隔声、吸声或利用厂房隔声等措施，以减轻对环境的影响。

表4-21 主要设备噪声源强

<table>
<thead>
<tr>
<th>声源</th>
<th>位置</th>
<th>源强</th>
<th>数量</th>
<th>降噪措施</th>
<th>降噪效果</th>
<th>降噪后源强</th>
</tr>
</thead>
<tbody>
<tr>
<td>分拣机</td>
<td>预处理系统</td>
<td>85</td>
<td>1</td>
<td>选择低噪声型设备、密闭厂房隔声、门窗采取双层空隔声门窗</td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>制浆筛分机</td>
<td>预处理系统</td>
<td>85</td>
<td>1</td>
<td></td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>输送机</td>
<td>预处理系统</td>
<td>85</td>
<td>1</td>
<td></td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>离心风机</td>
<td>臭气收集系统</td>
<td>90</td>
<td>3</td>
<td>进风口安装消声器、密闭厂房隔声</td>
<td>25</td>
<td>65</td>
</tr>
<tr>
<td>冷却塔</td>
<td>循环冷却水</td>
<td>75</td>
<td>1</td>
<td>上部风机安装消声器</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>循环水泵</td>
<td>水泵房</td>
<td>85</td>
<td>3</td>
<td>厂房隔声、进出口加装橡胶接头等振动阻尼器、减振垫</td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>渣浆泵</td>
<td>预处理系统</td>
<td>85</td>
<td>8</td>
<td>厂房隔声、进出口加装橡胶接头等振动阻尼器、减振垫</td>
<td>20</td>
<td>65</td>
</tr>
</tbody>
</table>

经处理措施及厂界距离衰减后，各厂界均达到《工业企业厂界环境噪声排放标准》（GB12348-2008）2类标准要求。

4.10.4 固体废物

按照《固体废物鉴别标准 通则》（GB34330-2017）、《建设项目危险废物环境影响评价指南》的要求，对本项目产生的目标产物之外的物质进行分析。

（1）预处理废渣

根据一期环评及验收资料，本项目产生的预处理废渣有5400t/a，收集后送入垃圾焚烧发电项目焚烧处置。

（2）废脱硫剂

项目产生沼气经脱硫净化后，产生的废脱硫剂量为3t/a，产生的废脱硫剂不在厂区长期储存，定期由供货厂家回收。
（3）废油脂

项目在三相分离过程中会产生废油脂，生产量为949t/a，该部分油脂为粗油脂，属于一般固废，外销。

（4）废润滑油及废含油手套、棉纱

废润滑油产生量为0.016t/a，废含油手套及棉纱产生量为0.002t/a，交由外包检修单位收运。

根据《固体废物鉴别标准 通则》（GB34330-2017）分析，项目固废产生情况汇总见下表4-21。

<table>
<thead>
<tr>
<th>污染源</th>
<th>污染物</th>
<th>治理前产生量(t/a)</th>
<th>排放量(t/a)</th>
<th>治理后削减量(t/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>固体废物</td>
<td>预处理废渣</td>
<td>5400</td>
<td>0</td>
<td>5400</td>
</tr>
<tr>
<td></td>
<td>废脱硫剂</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>废油脂</td>
<td>949</td>
<td>0</td>
<td>949</td>
</tr>
<tr>
<td></td>
<td>厌氧发酵系统</td>
<td>2880</td>
<td>0</td>
<td>2880</td>
</tr>
<tr>
<td></td>
<td>产生的沼渣</td>
<td>0.016</td>
<td>0</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>废含油手套及棉纱</td>
<td>0.002</td>
<td>0</td>
<td>0.002</td>
</tr>
</tbody>
</table>

扩建后全厂固废产生情况见下表4-22。

<table>
<thead>
<tr>
<th>序号</th>
<th>废渣名称</th>
<th>产生量(t/a)</th>
<th>处置措施</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>预处理废渣</td>
<td>10800</td>
<td>送垃圾焚烧发电项目焚烧处置</td>
</tr>
<tr>
<td>2</td>
<td>废脱硫剂</td>
<td>6</td>
<td>定期由供货厂家回收</td>
</tr>
<tr>
<td>3</td>
<td>废油脂</td>
<td>2000</td>
<td>外销</td>
</tr>
<tr>
<td>4</td>
<td>废润滑油</td>
<td>0.032</td>
<td>项目检修由外包公司完成，产生的固废由外包单位收运，项目不设固废暂存间</td>
</tr>
<tr>
<td>5</td>
<td>废含油手套及棉纱</td>
<td>0.004</td>
<td>送污泥干化项目干化后由垃圾焚烧项目焚烧</td>
</tr>
<tr>
<td>6</td>
<td>厌氧发酵系统产生的沼渣</td>
<td>5760</td>
<td>/</td>
</tr>
</tbody>
</table>

合计 | 18566.036 |

69
5 项目区域环境概况

5.1 自然环境概况

5.1.1 地理位置

绵阳市位于四川盆地西北部，涪江中上游地带。地理坐标为：东经 103°45’～105°43’，北纬 30°42’～33°03’。东邻广元市的青川县、剑阁县和南充市的南部县、西充县；南接遂宁市的射洪县；西接德阳市的罗江县、中江县、绵竹县；西北与阿坝藏族羌族自治州和甘肃省的文县接壤。

绵阳，中国唯一的科技城，四川省第二大城市，位于四川省西北部，距省会成都 90 公里。幅员面积 20249 平方公里。总人口 530 万。绵阳市辖 2 个区（涪城，游仙），1 个县级市（江油）和 6 个县（三台，安县，平武，北川，梓潼，盐亭），代管省政府科学城办事处。市区建成区面积 114.08 平方千米，城区人口 114 万。

项目选址位于绵阳市玉皇镇坚堡梁村八社，北距绵阳城区建成区约 21km，项目地理位置见附图 1。

5.1.2 地形地貌

市境大地构造单元西北部为扬子准地台与松潘——甘孜地槽褶皱系（南北向），昆仑——秦岭地槽褶皱系（东西向）的结合部位；东南部属杨子准地台范围内。全市出露地层基本齐全，沉积总厚度达 33637m 以上。厂址处在山腰上，地下水资源丰富；区域地质稳定，无构造断裂。整个厂址内无采空及不良物理地质现象。厂址所在区域地震烈度为 VI 度。

市境地貌受地质构造制约，地势西北高、东南低。西北部为山地，山脉有摩天岭山脉、岷山山脉和龙门山脉，包括最高峰海拔 5400m 的雪宝顶；东南部为平坝、丘陵，位于东南端海拔 307.3m 的江河谷短沟口，是境内最低点。境内幅员面积构成比为山区占 61.0%，丘陵占 20.4%，平原占 18.6%。

工作区内地势总体上西高东低，最高点为团结水库西侧丘坡，高程 552m，最低点为巩家沟沟口东侧出图处，高程 434m，最大高差 118m。一般丘坡相对高差 30～70m，多小于 50m。主干沟谷庞家堰呈北西—南东向发育，于项目区东侧...
流经，项目区发育的巩家沟近呈西向东于关帝镇处折而向南汇入庞家堰，并最终于芦溪镇流入涪江内，全长约 22.41km。巩家沟沟谷多呈显缓“U”形，局部变窄，谷宽处达 450m 左右，窄处也有 100m 许，沟谷呈上、下游段宽而中游段狭，地势平缓，总体上，沟谷纵坡 4.0～8.51‰，谷底多被洪坡积粉质粘土覆盖。

项目建设地位于巩家沟沟源宽缓凹地区，平面上呈一“C”形环状状坡地形，地势北、西、南高而东低。西侧为垃圾卫生填埋场入口，北侧凹地为垃圾填埋填埋库区，南侧凹地即为拟建发电厂所在区域，垃圾填埋场调节池、渗滤处理站位于东侧巩家沟沟源出口带。

项目区位于高程 470～480m 间地带，最高处为南侧坚堡梁村处丘顶，高程约 550m 许，韩包支渠于拟建发电场外侧顺地形绕行而过，场地内因工程建设削坡，边坡多基岩出露，而谷底多为人工填土不均分布（削坡物质堆积），厚度不一。

工程区缓坡及宽缓谷底多为第四系堆积层所覆盖，为农耕、林地。区内除季节性农作物外，主要为桑树、竹林和杂树、杂草分布。X106 县道从垃圾卫生填埋场西侧进场口通过，可通行大型汽车，交通方便。

5.1.3 气候气象

绵阳市属亚热带湿润季风气候区，四季分明，气候宜人，具有春早、夏热、秋凉、冬暖的特点。盛夏雨热同季，全年都适于农作物生长。年平均气温 14.7～17.3℃，年平均无霜期在 253～301 天之间，年平均日照时数 929.7～1391.4 小时，年降雨量 825～1417mm，多集中在 6～9 月份。相对湿度在 70%以上。年平均风速 1.1m/s，主导风向为东北风。

据绵阳气象站 2003～2012 年 10 年资料：多年平均降水量 810.4mm。多年平均气温 16.9℃(见表 4-1)，年均最高气温 17.8℃(2007 年)，年均最低气温 16.5℃(2011、2012 年)，7 月最热，平均气温 26.2℃，1 月最冷，平均气温 5.6℃，极端最高气温 37.7℃(2006.7.17)，最低气温 -3.3℃(2005.1.2)。多年平均蒸发量为 865.5mm，年均最大值 1000.4mm（2006 年），年均最小值 804.2mm（2010 年）。

5.1.4 水文

1、地表水

境内河流属涪江水系。涪江是嘉陵江右岸的一级支流，发源于岷山东麓松潘
县的三舍驿雪宝顶（海拔5555m），经平武、江油、绵阳、三台、遂宁、合川注入嘉陵江，全长670km，流域面积36400km²。

涪江自江油县飞凤山向南流入绵阳市中区，于永安镇赵家脊流出区境，此段河长39.25km，天然落差63.7m，平均比降1.6‰，汇水面积1012.6km²。河床宽阔，可达1~2km。河床枯水期水面宽100~200m，洪水期水面宽可达1000m以上，属顺直微变型，两岸边有沙滩交错分布；心滩发育，并断续出现，水流多转折，叉道较多，河床底部多为砂、砾、卵石，间有基岩出露。据涪江桥水文站实测资料统计，最大流量10400m³/s，最小流量34.6m³/s，多年平均流量280m³/s。

项目建设地东侧的庞家堰为涪江右岸（西岸）一级支流，主干沟谷呈北西南东向发育，因地处宽谷丘陵区，沟源众多，水系呈树枝状分布。

发育于项目区的巩家沟为庞家堰右岸（右岸）支流，由西南向东北在关帝镇处转而向东南，于关帝镇南缘小桥儿与从团结水库发育的支沟汇合后，由西北向南东流入庞家堰，呈北西至南东向径流，并于响滩子处折而向东流入涪江内。冲沟从项目区到庞家堰交汇处长约9.88km，至涪江入江口处全长约22.41km。

巩家沟（水体功能为灌溉）两侧丘陵低缓，沟谷多宽而平，谷宽处达450m左右，窄处也有100m许，表现为上、下游段窄而中游段宽，地势平缓，总体上，沟谷纵坡4.0~8.51‰，谷底多被洪积粉质粘土覆盖，据SK2、SK5孔揭露，覆盖层厚14.15~15.00m。

巩家沟沟内多建有水闸，常年均有流水，最大流量出现在每年的7、8月份，洪水期时沟水位上涨1.5m左右，中下游区沟两岸农田多被淹没，流量为0.0355/s。由于涪江及其支流均属雨水型河流，受降雨时间和强度的制约，自然流量与水位变化幅度大。

2、地下水
1）地下水类型

根据调查区含水介质性质及其在空间展布特征，地下水主要类型属基岩风化带孔隙裂隙水，局部尚有上层滞水分布。区内地下水的富水性与其地层岩性、地质构造特征、地貌部位关系密切。

风化带孔隙裂隙水广泛分布于工作区岩石浅部（上部）内，是评价区内主要的地下水类型，也是该地区分散农户日常生活和生产用水的主要水源。区内岩石
以砂岩为主，次为粉砂质泥岩，岩层倾角较平缓，一般 1～5°，岩石浅部（上部）风化裂隙发育，本次钻孔揭露风化裂隙发育深度一般在 31.90m 以上，该带是地下水强烈交替循环带，地下水将岩石中钙质溶蚀、携走，形成溶孔，与风化裂隙构成孔隙裂隙网络，含风化带孔隙裂隙水，属潜水。地下水的富集程度受地质环境和地貌条件的控制，丘顶、谷坡地带地形较陡，是地下水的入渗补给和径流区，地下水循环交替强，水力坡度大（41.34‰～76.26‰），赋存条件差，不利于地下水储存，富水性差。地形和缓的地区，网状风化裂隙比较发育，补给范围大，地下水沿着谷坡向坡底沿沟谷区径流、埋藏，因此，富水性较好。沟谷底部及部分凹地因有第四系粘性土覆盖而使地下水具微承压性，从丘坡到沟谷、凹地，地下水由潜水转化为承压水。

据调查，区内泉点出露少见，主要呈浸润状产出。分布于谷坡坡脊的 J23 井（红层井，深 18.00m）枯期时井内无水，位于谷底的 SK2、SK5 孔经抽水试验单井出水量 52.20、57.04m³/d，单位涌水量 0.047、0.049L/s·m。说明区内单井出水量较小，且表现出谷坡向谷底、钻孔出水量由小增大的现象，前者为补给径流区，后者是径流储存区，因此，富水性谷底较谷坡好。地下水富水性主要受补给面积控制，补给面积大，地下水丰富，反之，地下水贫乏。

区内顺沟谷表部广泛分布有粉质粘土层，为农耕地。据 SK2、SK5 孔揭露可知，厚度达 14.15～15.00m，一般孔深 10.00m 以上多呈软塑状。虽然粉质粘土透水微弱，但其表部具失水开裂特征，易形成深度不大但分布较多的张裂隙。在雨季、水稻种植期，形成上层滞水。

其主要受雨季降水、季节性的水稻种植稻田水补给，次有基岩风化带孔隙裂隙水排泄补给。该类水水量小，水量、水位季节性变化大，枯水期常无水。

2）地下水补给、迳流、排泄条件

工作区风化带孔隙裂隙水以地表分水岭为界，以沟谷为中心，形成一个相对独立的水文地质单元。在该水文地质单元内，丘顶和丘坡一般为地下水的补给、径流区、沟谷为地下水的埋藏径流与排泄区，其总体特点是就近补给就近排泄。

大气降水是区内地下水主要的补给来源，次有堰塘、季节性水渠地表水体补给。地下水接受补给区主要是含水层的露头区，其接受大气降水入渗补给量的多少又决定于有效降水量大小和包气带岩性以及地形地貌特征，当有效降水量一定
时，包气带岩性的渗透性愈强，地势相对平缓地段，降水入渗补给就愈多。另外，水稻种植期的水田地表水、溪流沟水、渠水分流也是区地下水水的另一补给来源。

区内降水充沛，多年年平均降水量 810.4mm，每年的 5～9 月降水较集中，占全年降水量 83.91%，有丰富的降水补给来源，但具有明显的季节性。基岩出露区包气带岩性为砂岩、泥岩、粉砂岩，由于含水层露头区岩体直接裸露，地下水接受降水入渗补给条件较好。在缓坡、平坝及沟谷地区，包气带岩性主要为第四系粉质粘土，谷坡地带粉质粘土厚度一般小于 2m，在沟谷地带粉质粘土层厚度一般在 0.50～15.00m 左右，渗透系数一般在 3.81×10^{-6}～2.66×10^{-5} cm/s 之间，渗透性等级为微至弱，为相对隔水层，受其阻隔，地下水接受补给条件较差。

区内岩石浅部风化裂隙及溶孔、溶隙发育，大气降水入渗径流途径顺畅，降水通过风化孔隙裂隙网络渗入地下，地下水接受补给后，一般根据地形顺谷坡由高向低径流。由于斜坡地带地形相对较缓的地段，水力坡度大，地下水循环交替强，因此，其径流条件较好。沟谷、凹地区地形较平缓，主要为风化带裂隙孔隙水富集埋藏区，地下水径流速度慢，径流条件相对较差。

3）地下水动态变化

区内浅部风化带孔隙裂隙水主要接受大气降水补给，因此，地下水的动态变化主要受大气降水量控制，季节变化明显，同时，不同的地貌部位地下水的动态变化也不尽一致。

根据调查和访问，在谷坡凹地、沟谷地带，民井水量、水位变化较小，地下水位年变幅一般 0.5～2.0m，这是因为这些地带多属于地下水埋藏径流带，汇水面积相对较大，地下水接受补给量大。

5.1.5 生物多样性

绵阳生物多样性丰富，全市有维管束植物 4500 余种，其中主要植物有 2471 种，列人全国植物保护的有珙桐、连香、杜仲、四川红杉、水杉、木青等 39 种。有药用植物 2156 种，其中常用药材 457 种。桔梗、麦冬、附子、枣皮、杜仲、黄连、党参、银杏、贝母、虫草等数十种优质药材著称中外。木耳等大型真菌和地衣植物、蕨类植物资源丰富。市境共有林业用地 1562.2 万亩。森林面积 941.08 万亩，森林覆盖率为 45%，现有林地 73 万多公顷。林木总蓄积量 8136 万立方米。动物资源中，除家养动物 57 个品种外，有野生动物 330 种。其中属
全省重点保护的珍稀动物 42 种，列入全国重点保护的珍稀动物 26 种，尤以大熊猫、金丝猴、云豹、牛羚、黑颈鹤、小熊猫、毛冠鹿等驰名中外。

据调查，建设周围评价范围内无需特殊保护的动植物。

5.1.6 矿产资源

绵阳市矿产资源主要有铁、金、铝、铜、煤、铅、锌、锰、锡、铂、汞、银、磷、石灰石、石英石、重金石、石油、天然气、大理石、白云岩、玻璃砂岩、耐火粘土、膨润土、高岭土、方解石、白垩、石棉、水晶、萤石等有工业开采价值的矿产资源 57 种。已开发的矿山石探明储量，已开发利用的矿产 21 种。开采价值大、储量居四川重要地位的共 15 种。其中黄金、锰、锰矿白云岩、膨润土的探明储量居全省首位；重晶石、玻璃砂岩走第二位；天然气、水泥灰岩、水泥配料、铸型砂分别为第二位；熔剂灰岩列第四位，硫磺岩居第六位。有矿产地 335 处，其中黑色金属 73 处，有色金属 12 处，贵金属 69 处，燃料矿产 13 处，非金属矿产 155 处，全市各类矿产具有一定工业矿床规模的产地共 74 处。其中黑色金属 17 处，有色金属 4 处，贵金属 14 处，燃料矿产 4 处，非金属矿产 35 处。

本项目区域不涉及上述矿产资源。

5.2 绵阳市第二生活垃圾填埋场概况

绵阳城区生活垃圾卫生填埋场（又称绵阳市第二生活垃圾卫生填埋场）位于绵阳市玉皇镇，处于城区规划范围以外，设计库容 499.8 万 m³，设计日平均处理规模 710t/d，服务时间 15 年，2009 年委托四川省环境保护科学研究院完成了该项目的环评，并取得了省环保厅“川环审批[2009]144 号文”的批复。垃圾填埋场于 2012 年底时开始试运行。目前剩余库容为 110 万立方，每日填充量为 400 立方。仅留下部分区域为绵阳市生活垃圾焚烧发电厂飞灰稳定化物的卫生填埋处置服务。样品进行送检检验，检测达到《生活垃圾填埋场污染控制标准》（GB16889-2008）相关要求后，可在绵阳城区生活垃圾卫生填埋场专门划出的区域内填埋处理。
6 环境质量现状评价

6.1 环境空气质量现状监测

本次评价引用《绵阳市生活垃圾焚烧发电项目扩建工程环境影响评价报告书》中监测数据（2018 年 2 月 28 日~2018 年 3 月 29 日）评价区域环境质量现状

1、监测点位及监测因子

<table>
<thead>
<tr>
<th>断面</th>
<th>名称</th>
<th>方位</th>
<th>距离</th>
<th>监测点布设坐标</th>
<th>监测项目</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>哨棚院子</td>
<td>北</td>
<td>1645</td>
<td>E104°43'16"N31°18'49"</td>
<td>PM_{10}, SO_{2}, NO_{2}, PM_{2.5}</td>
</tr>
<tr>
<td>G2</td>
<td>杨家湾</td>
<td>东南</td>
<td>1560</td>
<td>E104°43'58"N31°17'34"</td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>谢家院子</td>
<td>西</td>
<td>1723</td>
<td>E104°41'50"N31°18'22"</td>
<td></td>
</tr>
<tr>
<td>G5</td>
<td>罗汉寺</td>
<td>北</td>
<td>2707</td>
<td>E104°42'42"N31°19'42"</td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>杨家镇</td>
<td>/</td>
<td>/</td>
<td>E104°43'18"N31°20'20"</td>
<td>PM_{10}, SO_{2}, NO_{2}, PM_{2.5}</td>
</tr>
<tr>
<td>G7</td>
<td>彭家咀</td>
<td>北</td>
<td>965</td>
<td>E104°43'13"N31°18'36"</td>
<td>臭气浓度, H_{2}S, NH_{3}</td>
</tr>
<tr>
<td>G8</td>
<td>玉皇镇场镇</td>
<td>西南</td>
<td>881</td>
<td>E104°42'29"N31°17'42"</td>
<td></td>
</tr>
<tr>
<td>G9</td>
<td>朱家坪</td>
<td>南</td>
<td>733</td>
<td>E104°43'5"N31°17'58"</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>玉皇镇场镇西</td>
<td>西南</td>
<td>969</td>
<td>E104°42'19"N31°17'49"</td>
<td>PM_{10}, SO_{2}, NO_{2}, PM_{2.5}，臭气浓度，H_{2}S, NH_{3}</td>
</tr>
<tr>
<td>G10</td>
<td>项目所在地</td>
<td>/</td>
<td>/</td>
<td>E104.7165°N31.2999°</td>
<td>TVOC</td>
</tr>
</tbody>
</table>

2、监测时间及分析方法

监测时间：G1~G9 采样日期为 2018 年 2 月 28 日~2018 年 3 月 29 日，间隔监测 7 日；G10 采样日期为 2019 年 1 月 15 日~2019 年 1 月 21 日。
具体按照监测规范进行。

监测频次：按照《空气和废气监测分析方法》（第四版）、《环境影响评价技术导则 大气环境》（HJ2.2-2012）、《环境空气质量标准》（GB3095-2012）及有关规定和要求执行。

3、检测结果

<table>
<thead>
<tr>
<th>项目</th>
<th>检测点</th>
<th>1小时平均值（TVOC为8小时平均值）</th>
<th>24小时平均值</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>浓度范围</td>
<td>最大值超标率（%）</td>
</tr>
<tr>
<td>SO₂</td>
<td>G1</td>
<td>ND-0.014</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>ND-0.016</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>ND-0.017</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>ND-0.013</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>G5</td>
<td>ND-0.012</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>G6</td>
<td>ND-0.016</td>
<td>3.2</td>
</tr>
<tr>
<td>NO₂</td>
<td>G1</td>
<td>0.026-0.073</td>
<td>36.50</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>0.025-0.068</td>
<td>34.00</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>0.026-0.077</td>
<td>38.50</td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>0.026-0.062</td>
<td>31.00</td>
</tr>
<tr>
<td></td>
<td>G5</td>
<td>0.026-0.067</td>
<td>33.50</td>
</tr>
<tr>
<td></td>
<td>G6</td>
<td>0.023-0.062</td>
<td>31.00</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>G1</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G5</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G6</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>PM₂·₅</td>
<td>G1</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G5</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G6</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>臭气浓度</td>
<td>G3</td>
<td>ND-10</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>G7</td>
<td>ND-10</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>G8</td>
<td>ND-10</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>G9</td>
<td>ND-10</td>
<td>50</td>
</tr>
<tr>
<td>硫化氢</td>
<td>G3</td>
<td>ND-0.00276</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>G7</td>
<td>ND-0.00200</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>G8</td>
<td>ND-0.00264</td>
<td>26</td>
</tr>
</tbody>
</table>
绵阳市餐厨废弃物资源化利用和无害化处理项目扩建 100t/d 生产线项目
环境影响报告书

<table>
<thead>
<tr>
<th>项目</th>
<th>测点</th>
<th>1小时平均值(TVOC为8小时平均值)</th>
<th>24小时平均值</th>
<th>浓度范围</th>
<th>最大值超标率(%)</th>
<th>超标率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1小时平均值(TVOC为8小时平均值)</td>
<td>24小时平均值</td>
<td>浓度范围</td>
<td>最大值超标率(%)</td>
<td>超标率(%)</td>
</tr>
<tr>
<td>氨</td>
<td>G9</td>
<td>ND-0.00203</td>
<td>20</td>
<td>0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>ND-0.08</td>
<td>40</td>
<td>0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G7</td>
<td>ND-0.16</td>
<td>80</td>
<td>0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G8</td>
<td>ND-0.18</td>
<td>90</td>
<td>0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>G9</td>
<td>ND-0.15</td>
<td>75</td>
<td>0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>TVOC</td>
<td>G10</td>
<td>0.0012~0.0261</td>
<td>4</td>
<td>0</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

注：ND表示未检出，未检出因子按照检出限的0.5倍统计，其中：NH3检出限为0.01 mg/m³，H₂S检出限为0.001 mg/m³。

监测结果表明，评价区各监测点 PM10、PM2.5、SO₂、NO₂ 监测值均满足《环境空气质量标准》(GB3095-2012)中二级标准要求；NH₃、H₂S、监测浓度均满足《工业企业设计卫生标准》(TJ36-79)居住区大气中有害物质的最高容许浓度要求；臭气浓度未检出。

6.2 地表水环境质量现状

本次评价引用绵阳市医疗废物集中处置中心项目（二期）的监测数据。

1、监测点位及监测因子

表 6.2-1 水质监测点位布置

<table>
<thead>
<tr>
<th>采样点位</th>
<th>断面位置</th>
<th>经纬度</th>
<th>监测因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>庞家堰填埋场处理后的渗滤液排入上游 200m</td>
<td>N31°18′45″E104°43′13″</td>
<td>pH 值，化学需氧量，氨氮，石油类，挥发酚，总磷，氯化物，铅，镉，砷，汞，六价铬，粪大肠菌群</td>
</tr>
<tr>
<td>W2</td>
<td>庞家堰填埋场处理后的渗滤液排入下游~1000m</td>
<td>N31°18′59″E104°43′53″</td>
<td>pH 值，化学需氧量，氨氮，石油类，挥发酚，总磷，氯化物，铅，镉，砷，汞，六价铬，粪大肠菌群</td>
</tr>
<tr>
<td>W3</td>
<td>庞家堰填埋场处理后的渗滤液排入下游~3000m</td>
<td>N31°19′24″E104°45′58″</td>
<td>pH 值，化学需氧量，氨氮，石油类，挥发酚，总磷，氯化物，铅，镉，砷，汞，六价铬，粪大肠菌群</td>
</tr>
<tr>
<td>W4</td>
<td>巩家沟汇入口上游 500m</td>
<td>N31°18′23″E104°47′48″</td>
<td>pH 值，化学需氧量，氨氮，石油类，挥发酚，总磷，氯化物，铅，镉，砷，汞，六价铬，粪大肠菌群</td>
</tr>
<tr>
<td>W5</td>
<td>巩家沟入口下游~2000m</td>
<td>N31°17′11″E104°49′18″</td>
<td>pH 值，化学需氧量，氨氮，石油类，挥发酚，总磷，氯化物，铅，镉，砷，汞，六价铬，粪大肠菌群</td>
</tr>
</tbody>
</table>

2、监测时间、频次

于 2018 年 2 月 28 日～3 月 2 日连续监测 3 天，每天各一次。

3、监测分析方法

采样及分析方法按国家环保总局《环境监测技术规范》和《水和废水监测分析方法》（第四版）有关规定和要求执行。
4、水质现状与评价

采用单项标准指数法评价，其数学模式如下:

一般污染物: \[S_{ij} = \frac{C_{ij}}{C_{is}} \]

式中：
- \(S_{ij} \)——I 污染物在监测点 \(j \) 的标准指数;
- \(C_{ij} \)——I 污染物在监测点 \(j \) 的浓度值 (mg/L);
- \(C_{is} \)——I 污染物的水环境质量标准值 (mg/L)。

\(\text{pH} \):

\[S_{\text{pH},j} = \begin{cases} \frac{7.0 - pH_j}{7.0 - pH_{sd}} & pH_j \leq 7.0 \\ \frac{pH_j - 7.0}{pH_{su} - 7.0} & pH_j > 7.0 \end{cases} \]

式中：
- \(pH_j \)——监测点 \(j \) 的 \(pH \) 值;
- \(pH_{sd} \)——水质标准 \(pH \) 下限值;
- \(pH_{su} \)——水质标准 \(pH \) 的上限值

5、地表水监测结果

地表水监测结果见下表
监测及评价结果分析表明：巩家沟和庞家堰所有断面的 COD、BOD5、氨氮、总磷均有超标，其余监测断面的各监测指标均符合《地表水环境质量标准》(GB3838-2002)III类标准限值。超标原因主要为巩家沟和庞家堰水量较小，并成为附近的纳污河流，农田灌溉排水和农民生活废水未经处理排入这两条河流，导致水质出现超标现象。
6.3 噪声环境质量现状监测

项目引用绵阳市餐厨废弃物资源化利用和无害化处理项目一期验收监测报告数据。

1、监测点位

<table>
<thead>
<tr>
<th>编号</th>
<th>噪声监测点位</th>
<th>监测项目</th>
<th>监测频次</th>
</tr>
</thead>
<tbody>
<tr>
<td>1#</td>
<td>厂界北侧外 1m</td>
<td>昼间、夜间厂界噪声</td>
<td>1 次/天；连续 2 天</td>
</tr>
<tr>
<td>2#</td>
<td>厂界东侧外 1m</td>
<td>昼间、夜间厂界噪声</td>
<td>2 天</td>
</tr>
<tr>
<td>3#</td>
<td>厂界南侧外 1m</td>
<td>昼间、夜间厂界噪声</td>
<td></td>
</tr>
<tr>
<td>4#</td>
<td>厂界西侧外 1m</td>
<td>昼间、夜间厂界噪声</td>
<td></td>
</tr>
</tbody>
</table>

2、评价标准、评价量及评价方法

（1）评价标准

评价范围内，环境噪声执行《工业企业厂界环境噪声排放标准》（GB12348-2008）的 2 类标准，执行标准限值见下表。

<table>
<thead>
<tr>
<th>适用范围</th>
<th>标准类别</th>
<th>等效声级 L_{Aeq} (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>环境噪声</td>
<td>2</td>
<td>昼 60 夜 50</td>
</tr>
</tbody>
</table>

（2）评价量及评价方法

以等效连续 A 声级作为评价量，对照标准进行分析评价。

3、噪声监测方法和结果

本次环境影响评价声环境质量现状监测于 2019 年 12 月 13 日~12 月 14 日进行，监测 2 天，昼间、夜间各监测 1 次。

现状监测及评价结果见下表。
表 6.3-3 引用噪声监测结果表 单位: dB(A)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>昼间</td>
<td>夜间</td>
<td>昼间</td>
</tr>
<tr>
<td>1</td>
<td>55</td>
<td>47</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>46</td>
<td>55</td>
</tr>
<tr>
<td>标准限值</td>
<td>2类</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

由上表可知，昼间和夜间厂界噪声符合《工业企业厂界环境噪声排放标准》（GB3096-2008）2类标准限值。

6.4 地下水环境质量现状监测

监测数据引用绵阳市医疗废物集中处置中心项目（二期）的监测数据

1. 监测布点

本次评价在项目评价区共设置6个地下水水质监测点位及10个地下水平位监测点位，具体情况详见下表。

表 6.4-1 地下水水质监测点位

<table>
<thead>
<tr>
<th>测点编号</th>
<th>点位位置</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>垃圾发电厂区西南侧</td>
<td>引用《绵阳市生活垃圾焚烧发电项目扩建工程环境影响评价报告书》监测数据</td>
</tr>
<tr>
<td>2</td>
<td>垃圾发电厂区</td>
<td>本次评价补充监测</td>
</tr>
<tr>
<td>3</td>
<td>垃圾发电厂区东北侧</td>
<td>本次评价补充监测</td>
</tr>
<tr>
<td>4</td>
<td>邓家湾坚壁梁村五组</td>
<td>本次评价补充监测</td>
</tr>
<tr>
<td>5</td>
<td>唐家湾坚壁梁村六组</td>
<td>本次评价补充监测</td>
</tr>
<tr>
<td>6</td>
<td>董家湾高山寺村八组</td>
<td>本次评价补充监测</td>
</tr>
</tbody>
</table>

表 6.4-2 地下水平位监测点位

<table>
<thead>
<tr>
<th>测点编号</th>
<th>点位位置</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>垃圾焚烧厂厂区东侧</td>
<td>引用《绵阳市生活垃圾焚烧发电项目扩建工程环境影响评价报告书》监测数据</td>
</tr>
<tr>
<td>2</td>
<td>污水处理厂东面边界处</td>
<td>引用《绵阳市生活垃圾焚烧发电项目扩建工程环境影响评价报告书》监测数据</td>
</tr>
<tr>
<td>3</td>
<td>垃圾焚烧厂东南侧边界处</td>
<td>引用《绵阳市生活垃圾焚烧发电项目扩建工程环境影响评价报告书》监测数据</td>
</tr>
<tr>
<td>4</td>
<td>垃圾焚烧厂东南侧边界处</td>
<td>引用《绵阳市生活垃圾焚烧发电项目扩建工程环境影响评价报告书》监测数据</td>
</tr>
<tr>
<td>5</td>
<td>垃圾焚烧厂西侧边界处</td>
<td>引用《绵阳市生活垃圾焚烧发电项目扩建工程环境影响评价报告书》监测数据</td>
</tr>
<tr>
<td>6</td>
<td>垃圾填埋场西侧</td>
<td>本次评价补充监测</td>
</tr>
<tr>
<td>7</td>
<td>邓家湾坚壁梁村五组</td>
<td>本次评价补充监测</td>
</tr>
<tr>
<td>8</td>
<td>唐家湾坚壁梁村六组</td>
<td>本次评价补充监测</td>
</tr>
<tr>
<td>9</td>
<td>董家湾高山寺村八组</td>
<td>本次评价补充监测</td>
</tr>
</tbody>
</table>
2、监测时段及监测因子

监测时间：1#~3#点位监测时间为2018年3月3日和2018年3月4日，4#~6#点位监测时间为2018年10月12日和2018年10月13日。

监测因子为pH值、氨氮、硝酸盐、亚硝酸盐、挥发性酚类、氰化物、总硬度、溶解性总固体、高锰酸盐指数、氟化物、铅、镉、铜、锌、砷、六价铬、汞、钾、钠、钙、镁、碳酸根、碳酸氢根、硫酸盐、氯离子、细菌总数、总大肠菌群。

地下水采样按规范进行，分析方法采用《地下水质量标准（GB/T14848-2017）》中推荐的方法。

3、地下水水质监测结果

地下水现状评价结果见下表。

<table>
<thead>
<tr>
<th>编号</th>
<th>监测项目（mg/L，pH值无量纲）</th>
<th>1#</th>
<th>2#</th>
<th>3#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>氨氮</td>
<td>pH值</td>
<td>硝酸盐</td>
<td>亚硝酸盐</td>
</tr>
<tr>
<td>1#</td>
<td>0.029</td>
<td>7.85</td>
<td>1.0</td>
<td>0.91</td>
</tr>
<tr>
<td>2#</td>
<td>ND</td>
<td>7.51</td>
<td>1.7</td>
<td>1.22</td>
</tr>
<tr>
<td>3#</td>
<td>ND</td>
<td>7.59</td>
<td>0.6</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>≤0.5</td>
<td>6.5-8.5</td>
<td>≤3.0</td>
<td>≤20</td>
</tr>
<tr>
<td></td>
<td>硫酸盐</td>
<td>溶解性总固体</td>
<td>总大肠菌群</td>
<td>细菌总数</td>
</tr>
<tr>
<td>1#</td>
<td>38.4</td>
<td>168</td>
<td>ND</td>
<td>60</td>
</tr>
<tr>
<td>2#</td>
<td>125</td>
<td>394</td>
<td>ND</td>
<td>80</td>
</tr>
<tr>
<td>3#</td>
<td>44.6</td>
<td>166</td>
<td>ND</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>≤250</td>
<td>≤1000</td>
<td>≤3.0</td>
<td>≤100</td>
</tr>
<tr>
<td></td>
<td>钾</td>
<td>钠</td>
<td>钙</td>
<td>镁</td>
</tr>
<tr>
<td>1#</td>
<td>1.70</td>
<td>6.28</td>
<td>85.4</td>
<td>12.6</td>
</tr>
<tr>
<td>2#</td>
<td>5.68</td>
<td>32.90</td>
<td>144</td>
<td>23.2</td>
</tr>
<tr>
<td>3#</td>
<td>1.62</td>
<td>7.21</td>
<td>107</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>/</td>
<td>≤200</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>
表 6.4-4 4-6#点位地下水水质监测结果

<table>
<thead>
<tr>
<th>编号</th>
<th>监测项目（mg/L, pH值无量纲）</th>
<th>4#</th>
<th>5#</th>
<th>6#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH（无量纲）</td>
<td>氨氮</td>
<td>硝酸盐</td>
<td>亚硝酸盐</td>
</tr>
<tr>
<td>4#</td>
<td>7.48</td>
<td>0.04</td>
<td>11.20</td>
<td>ND</td>
</tr>
<tr>
<td>5#</td>
<td>6.93</td>
<td>0.04</td>
<td>11.45</td>
<td>ND</td>
</tr>
<tr>
<td>6#</td>
<td>7.20</td>
<td>0.04</td>
<td>8.42</td>
<td>0.0</td>
</tr>
<tr>
<td>标准值</td>
<td>6.5-8.5</td>
<td>≤0.5</td>
<td>≤20</td>
<td>≤0.05</td>
</tr>
</tbody>
</table>

表 6.4-5 地下水质评价结果（Pi值）

<table>
<thead>
<tr>
<th>编号</th>
<th>监测项目（mg/L, pH值无量纲）</th>
<th>1#</th>
<th>2#</th>
<th>3#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH值</td>
<td>高锰酸盐指数</td>
<td>硝酸盐</td>
<td>亚硝酸盐</td>
</tr>
<tr>
<td>1#</td>
<td>0.06</td>
<td>/</td>
<td>0.33</td>
<td>0.05</td>
</tr>
<tr>
<td>2#</td>
<td>/</td>
<td>/</td>
<td>0.57</td>
<td>0.06</td>
</tr>
<tr>
<td>3#</td>
<td>/</td>
<td>/</td>
<td>0.20</td>
<td>0.04</td>
</tr>
<tr>
<td>Ⅲ类水标准</td>
<td>≤0.5</td>
<td>6.5-8.5</td>
<td>≤3.0</td>
<td>≤20</td>
</tr>
</tbody>
</table>

表 6.4-6 地下水质评价结果（Pi值）

<table>
<thead>
<tr>
<th>编号</th>
<th>监测项目（mg/L, pH值无量纲）</th>
<th>1#</th>
<th>2#</th>
<th>3#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>硫酸盐</td>
<td>溶解性总固体</td>
<td>总大肠菌群</td>
<td>细菌总数</td>
</tr>
<tr>
<td>1#</td>
<td>0.15</td>
<td>0.17</td>
<td>/</td>
<td>0.60</td>
</tr>
<tr>
<td>2#</td>
<td>0.50</td>
<td>0.39</td>
<td>/</td>
<td>0.80</td>
</tr>
<tr>
<td>3#</td>
<td>0.18</td>
<td>0.17</td>
<td>/</td>
<td>0.40</td>
</tr>
<tr>
<td>Ⅲ类水标准</td>
<td>≤250</td>
<td>≤1000</td>
<td>≤3.0</td>
<td>≤100</td>
</tr>
</tbody>
</table>

表 6.4-7 地下水质评价结果（Pi值）

<table>
<thead>
<tr>
<th>编号</th>
<th>监测项目（mg/L, pH值无量纲）</th>
<th>1#</th>
<th>2#</th>
<th>3#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>钾</td>
<td>钙</td>
<td>铁</td>
<td>钙</td>
</tr>
<tr>
<td>1#</td>
<td>/</td>
<td>0.03</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>2#</td>
<td>/</td>
<td>0.16</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>3#</td>
<td>/</td>
<td>0.04</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Ⅲ类水标准</td>
<td>/</td>
<td>≤200</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>
表 6.4-6 地下水质评价结果 (PⅠ值)

<table>
<thead>
<tr>
<th>监测项目 (mg/L, pH 值无量纲)</th>
<th>pH</th>
<th>氨氮</th>
<th>硝酸盐</th>
<th>亚硝酸盐</th>
<th>挥发酚类</th>
<th>氰化物</th>
<th>溶解性总固体</th>
<th>高锰酸盐指数</th>
<th>氯化物</th>
<th>氟化物</th>
<th>铅</th>
<th>镉</th>
<th>铁</th>
<th>铜</th>
</tr>
</thead>
<tbody>
<tr>
<td>4#</td>
<td>0.51</td>
<td>0.08</td>
<td>0.56</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.06</td>
<td>5</td>
<td>0.14</td>
<td>0.5</td>
<td>0.04</td>
<td>0.0001</td>
<td>0.1</td>
<td>7</td>
</tr>
<tr>
<td>5#</td>
<td>0.22</td>
<td>0.08</td>
<td>0.57</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.65</td>
<td>4</td>
<td>0.3</td>
<td>0.02</td>
<td>/</td>
<td>/</td>
<td>0.1</td>
<td>7</td>
</tr>
<tr>
<td>6#</td>
<td>0.65</td>
<td>0.08</td>
<td>0.42</td>
<td>0.00</td>
<td>/</td>
<td>/</td>
<td>0.82</td>
<td>5</td>
<td>0.25</td>
<td>0.4</td>
<td>0.08</td>
<td>/</td>
<td>0.2</td>
<td>0.00</td>
</tr>
<tr>
<td>标准值</td>
<td>6.5-8.5</td>
<td>≤0.5</td>
<td>≤20</td>
<td>≤0.0</td>
<td>≤0.0</td>
<td>≤100</td>
<td>≤3.0</td>
<td>0</td>
<td>≤0.01</td>
<td>≤0.005</td>
<td>≤0.3</td>
<td>1.0</td>
<td>≤0.30</td>
<td>0.04</td>
</tr>
<tr>
<td>项目</td>
<td>锌</td>
<td>铬</td>
<td>钼</td>
<td>六价铬</td>
<td>汞</td>
<td>铬</td>
<td>钠</td>
<td>钙</td>
<td>镁</td>
<td>硫酸盐</td>
<td>氯离子</td>
<td>总碱度 (HCO₃⁻)</td>
<td>总碱度 (CO₃²⁻)</td>
<td>0.0001</td>
</tr>
<tr>
<td>4#</td>
<td>0.008</td>
<td>0.08</td>
<td>0.02</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.11</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.3</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>5#</td>
<td>0.009</td>
<td>0.00</td>
<td>0.001</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.17</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.3</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>6#</td>
<td>0.008</td>
<td>0.00</td>
<td>0.03</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.25</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.3</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>标准值</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤200</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>≤25</td>
<td>≤250</td>
<td>0.27</td>
</tr>
</tbody>
</table>

表 6.4-7 地下水位监测结果表

<table>
<thead>
<tr>
<th>测点编号</th>
<th>点位位置</th>
<th>监测结果 (m)</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>垃圾焚烧厂厂区东侧</td>
<td>6.7</td>
<td>引用《绵阳市生活垃圾分类焚烧发电项目扩建工程环境影响评价报告书》监测数据</td>
</tr>
<tr>
<td>2</td>
<td>污水处理厂东南面边界处</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>垃圾焚烧厂东南侧边界处</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>垃圾焚烧厂东南面边界处</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>垃圾焚烧厂西侧边界处</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>垃圾填埋场西侧</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>邓家湾工业有限责任公司</td>
<td>0.74</td>
<td>本次评价补充监测</td>
</tr>
<tr>
<td>8</td>
<td>唐家湾工业有限责任公司</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>超家湾工业有限责任公司</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>超家湾工业有限责任公司 (唐家湾)</td>
<td>1.23</td>
<td></td>
</tr>
</tbody>
</table>

由监测结果可知，1~6#监测点位所有监测数据均满足《地下水质量标准 (GB/T14848-2017)》Ⅲ类标准要求，项目区地下水环境质量良好。

6.5 污染源调查

根据环境导则要求，对评价区域范围内的重点企业的大气、水污染源进行调查。调查在充分利用近期排污申报资料的基础上，结合实际调查，对该地区的各
污染源源强、排放的污染因子及排放特性进行核实和汇总，并采用“等标污染负荷法”，筛选出区域内主要污染源和主要污染物。

6.5.1 大气污染源现状调查

6.5.1.1 调查原则

本项目大气评价等级为二级，根据 HJ2.2-2018 要求，本项目大气污染源调查内容包括以下内容：

（1）调查项目现有污染源和扩建正常排放和非正常排放污染源，其中非正常排放内容包括非正常工况、频次、持续时间和排放量。

（2）调查本项目所有拟被替代的污染源（如有），包括被替代污染源名称、位置、排放污染物及排放量、拟被替代时间等。

6.5.1.2 调查内容

（1）现有项目大气污染源调查

<table>
<thead>
<tr>
<th>6.5-1 有组织排放监测结果及评价</th>
</tr>
</thead>
<tbody>
<tr>
<td>样品信息</td>
</tr>
<tr>
<td>采样日期</td>
</tr>
<tr>
<td>12月13日</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>12月13日</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

86
检测结果表明，该项目有组织排放废气所测指标符合《恶臭污染物排放标准》（GB14554-93）表2中标准限值

表6.5-2 无组织排放监测结果表单位：

<table>
<thead>
<tr>
<th>监测点位</th>
<th>监测日期</th>
<th>监测项目</th>
<th>监测结果 mg/m³</th>
<th>标准限值</th>
</tr>
</thead>
<tbody>
<tr>
<td>东北侧厂界外</td>
<td>2019年12月13日</td>
<td>NH₃</td>
<td>第一次 0.03 第二次 0.03 第三次 0.03 均值 0.03</td>
<td>NH₃ ≤ 1.5mg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂S</td>
<td>第一次 0.07 第二次 0.06 第三次 0.05 均值 0.06</td>
<td>H₂S ≤ 0.06mg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>颗粒物</td>
<td>第一次 0.267 第二次 0.233 第三次 0.217 均值 0.239</td>
<td>颗粒物 ≤ 20mg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOCs</td>
<td>第一次 0.72 第二次 0.74 第三次 0.67 均值 0.71</td>
<td></td>
</tr>
</tbody>
</table>
由上表可知，项目无组织颗粒物排放符合《大气污染物综合排放标准》（GB16297-1996）表2“无组织排放监控浓度限制”，VOCs符合《四川省固定污染源大气挥发性有机物排放标准》表5中限值，氨、硫化氢符合《恶臭污染物排放标准》表1中二级新扩改限值。

（2）扩建项目污染源调查

正常排放

扩建后恶臭气体有组织正常排放情况见下表

<table>
<thead>
<tr>
<th>污染源名称</th>
<th>污染物名称</th>
<th>产生情况（恶臭气体为植物液喷雾预除臭后）</th>
<th>排放情况</th>
<th>处理措施</th>
<th>处理效率</th>
</tr>
</thead>
<tbody>
<tr>
<td>综合处理区</td>
<td>NH₃</td>
<td>2.6 0.16 60000 0.26 0.016 60000</td>
<td>碱洗+生物滤池+光催化氧化除臭</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂S</td>
<td>0.21 0.0126 60000 0.021 0.00126 60000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

扩建后恶臭气体无组织排放情况见下表

<table>
<thead>
<tr>
<th>污染源</th>
<th>污染物名称</th>
<th>产生速率（植物液喷雾除臭后）</th>
<th>排放速率</th>
</tr>
</thead>
<tbody>
<tr>
<td>综合处理区</td>
<td>NH₃</td>
<td>0.018</td>
<td>0.018</td>
</tr>
</tbody>
</table>
非正常排放

根据四川省内已有的项目在实际运行中积累的工作经验，让国内餐厨废弃物处理设备运行情况分析，发生非正常排放有以下几种情形：

1) 植物液喷雾除臭系统故障

植物液喷雾除臭系统共设 90 只喷嘴，有可能在运行中出故障；另外，喷雾加药装置及喷雾泵也有可能在运行中出现故障，此时前端收集的恶臭气体浓度会上升。

2) 收集系统故障

收集系统故障主要有：收集系统管路泄漏、抽气风机停机。此时项目恶臭气体将在未经生物滴滤池处理的情况下通过无组织形式排放。

3) 生物滴滤池处理系统故障

常见故障主要为：系统堵塞阻力增加、生物膜失效、喷漆系统故障等。出现以上故障将导致生物滴滤池处理系统对恶臭的净化效率下降。

根据以上分析，非正常排放主要考虑为以下两种极端情况：

事故状况一，植物液喷雾除臭系统的除臭效率以 60%计，喷雾除臭系统故障时，可估算出恶臭气体产生源强增大为 NH₃：0.30kg/h，H₂S：0.023kg/h；同时，碱洗+生物滴滤池+光催化氧化处理系统故障导致总净化效率下降为 0。最终恶臭气体仍通过 15 米排气筒排放。

事故状况二，植物液喷雾除臭系统故障，同时收集、抽排系统及前端处理系统故障（捕集率按 90%计），导致项目恶臭气体未经净化以无组织形式排放。

项目非正常排放源强见下表。

| 表6.5-5 非正常工况大气污染物源强表
<table>
<thead>
<tr>
<th>非正常工况</th>
<th>排放方式</th>
<th>主要污染物</th>
<th>产生浓度 (mg/m³)</th>
<th>产生速率 (kg/h)</th>
<th>非正常工况排放速率 (kg/h)</th>
<th>净化效率及排放情况</th>
</tr>
</thead>
<tbody>
<tr>
<td>状况一</td>
<td>有组织</td>
<td>NH₃</td>
<td>4.5</td>
<td>0.27</td>
<td>0.27</td>
<td>净化效率下降为 0，废气通过 15 米排气筒排放</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂S</td>
<td>0.35</td>
<td>0.021</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>状况二</td>
<td>无组织(面源长 60 米、宽 40 米、高)</td>
<td>NH₃</td>
<td>/</td>
<td>0.30</td>
<td>0.30</td>
<td>净化效率下降为 0，废气以无组织形式排放</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂S</td>
<td>/</td>
<td>0.023</td>
<td>0.023</td>
<td></td>
</tr>
</tbody>
</table>
6.5.2 水污染源现状调查

1、调查原则

本项目地表水评价等级为三级A，根据《环境影响评价技术导则-地表水环境》（HJ23-2018）要求，本项目可不进行现场调查及现场监测，主要收集利用与建设项目排放口的空间位置和所排污染物的性质关系密切的污染源资料。

2、调查内容

由于医废项目废水与本项目废水均排入同一填埋场渗滤处理站处理达标后，经同一总排口排放，故引用其医废项目检测报告相关结果，所得结果如下表

采样日期 2019.12.13

<table>
<thead>
<tr>
<th>项目及结果</th>
<th>pH（无量纲）</th>
<th>色度（倍）</th>
<th>悬浮物（mg/l）</th>
<th>化学需氧量（mg/l）</th>
<th>五日生化需氧量（mg/l）</th>
<th>氨氮（mg/l）</th>
<th>总氮（mg/l）</th>
</tr>
</thead>
<tbody>
<tr>
<td>总排口日均值</td>
<td>6.72-6.84</td>
<td>2</td>
<td>3</td>
<td>23</td>
<td>5.6</td>
<td>0.174</td>
<td>0.94</td>
</tr>
<tr>
<td>限值</td>
<td>/</td>
<td>40</td>
<td>30</td>
<td>100</td>
<td>30</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>评价</td>
<td>/</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
</tr>
</tbody>
</table>

采样日期 2019.12.13

<table>
<thead>
<tr>
<th>项目及结果</th>
<th>总磷（mg/l）</th>
<th>汞（mg/l）</th>
<th>总铬（mg/l）</th>
<th>六价铬（mg/l）</th>
<th>砷（mg/l）</th>
<th>粪大肠菌群</th>
<th>总镉（mg/l）</th>
<th>总铅（mg/l）</th>
</tr>
</thead>
<tbody>
<tr>
<td>日均值</td>
<td>0.08</td>
<td>未检出</td>
<td>0.016</td>
<td>0.006</td>
<td>0.007</td>
<td><20</td>
<td>0.00015</td>
<td>未检出</td>
</tr>
<tr>
<td>限值</td>
<td>3</td>
<td>0.001</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
<td>10000</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>评价</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
</tr>
</tbody>
</table>

采样日期 2019.12.14

<table>
<thead>
<tr>
<th>项目及结果</th>
<th>pH（无量纲）</th>
<th>色度（倍）</th>
<th>悬浮物（mg/l）</th>
<th>化学需氧量（mg/l）</th>
<th>五日生化需氧量（mg/l）</th>
<th>氨氮（mg/l）</th>
<th>总氮（mg/l）</th>
</tr>
</thead>
<tbody>
<tr>
<td>总排口日均值</td>
<td>6.75-6.83</td>
<td>2</td>
<td>7</td>
<td>22</td>
<td>5.2</td>
<td>0.176</td>
<td>0.95</td>
</tr>
<tr>
<td>限值</td>
<td>/</td>
<td>40</td>
<td>30</td>
<td>100</td>
<td>30</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>评价</td>
<td>/</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
<td>达标</td>
</tr>
</tbody>
</table>

采样日期 2019.12.14
本次检测结果表明，该项目总排口废水所测指标色度、悬浮物、化学需氧量、五日生化需氧量、氨氮、总氮、总磷，汞、总铬、六价铬、砷、粪大肠菌群、总镉、总铅的排放浓度均符合《生活垃圾填埋场污染控制标准》（GB16889-2008）表2中限值标准。
7 环境影响预测与评价

7.1 施工期环境影响分析

本项目建筑依托一期已有建筑，仅进行设备安装，安装过程中会产生少量噪声，经墙体隔声和距离衰减后对周边声环境影响很小。

7.2 大气环境影响预测与评价

7.2.1 评价等级判定

(1) 大气环境影响评价工作等级确定

依据《环境影响评价技术导则-大气环境》(HJ2.2-2018)中 5.3 节工作等级的确定方法，结合项目工程分析结果，选择正常排放的主要污染物及排放参数，采用附录 A 推荐模型中的 AERSCREEN 模式计算项目污染源的最大环境影响，然后按评价工作分级判据进行分级。

① P_{max} 及 $D_{10\%}$ 的确定

依据《环境影响评价技术导则大气环境》(HJ2.2-2018)中最大地面浓度占标率 P_i 定义如下：

$$P_i = \frac{C_i}{C_{Oi}} \times 100\%$$

P_i——第 i 个污染物的最大地面空气质量浓度占标率，%；

C_i——采用估算模型计算出的第 i 个污染物的最大 $1h$ 地面空气质量浓度，μg/m3；

C_{Oi}——第 i 个污染物的环境空气质量浓度标准，μg/m3。

② 评价等级判别表

评价等级按表的分级判据进行划分。

<table>
<thead>
<tr>
<th>评价工作等级</th>
<th>评价工作分级判据</th>
</tr>
</thead>
<tbody>
<tr>
<td>一级评价</td>
<td>$P_{\text{max}} \geq 10%$</td>
</tr>
<tr>
<td>二级评价</td>
<td>$1% \leq P_{\text{max}} < 10%$</td>
</tr>
<tr>
<td>三级评价</td>
<td>$P_{\text{max}} < 1%$</td>
</tr>
</tbody>
</table>

(2) 污染源参数
表 7.2-2 主要废气污染源参数一览表（点源）

<table>
<thead>
<tr>
<th>污染源名称</th>
<th>排气筒底部中心坐标</th>
<th>排气筒参数</th>
<th>污染物名称</th>
<th>排放速率（kg/h）</th>
</tr>
</thead>
<tbody>
<tr>
<td>点源</td>
<td>104.713035</td>
<td>31.303896</td>
<td>NH₃</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>104.713035</td>
<td>31.303896</td>
<td>H₂S</td>
<td>0.00126</td>
</tr>
</tbody>
</table>

表 7.2-3 主要废气污染源一览表（矩形）

<table>
<thead>
<tr>
<th>污染源名称</th>
<th>污染物名称</th>
<th>排放位置</th>
<th>排放速率（kg/h）</th>
<th>年排放量（t/a）</th>
<th>面源面积（m²）</th>
<th>面源高度（m）</th>
</tr>
</thead>
<tbody>
<tr>
<td>矩形面源</td>
<td>NH₃</td>
<td>综合处理区</td>
<td>0.018</td>
<td>0.157</td>
<td>2400</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>H₂S</td>
<td></td>
<td>0.0014</td>
<td>0.0123</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（2）项目参数

估算模式所用的参数见下表

表 7.2-4 估算模型使用参数

<table>
<thead>
<tr>
<th>污染物</th>
<th>参数</th>
<th>取值</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>烟气流量（m³/h）</td>
<td>60000</td>
</tr>
<tr>
<td>点源</td>
<td>烟筒几何高度（m）</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>烟筒出口内径（m）</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>烟气流速（m/s）</td>
<td>14.74</td>
</tr>
<tr>
<td></td>
<td>出口烟气温度（℃）</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>项目位置</td>
<td>农村</td>
</tr>
<tr>
<td></td>
<td>NH₃评价标准（mg/m³）</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>NH₃排放速率（kg/h）</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>H₂S评价标准（mg/m³）</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>H₂S排放速率（kg/h）</td>
<td>0.00126</td>
</tr>
<tr>
<td></td>
<td>长度</td>
<td>60</td>
</tr>
<tr>
<td>矩形面源</td>
<td>宽度</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>NH₃评价标准（mg/m³）</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>NH₃排放速率（kg/h）</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>H₂S评价标准（mg/m³）</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>H₂S排放速率（kg/h）</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

（3）评价工作等级结果

估算模型结果见下表
有组织估算结果
无组织估算结果

根据估算模型显示，无组织排放中 H₂S 距离源 52m 处占标率最大，为 8.62。
根据《环境影响评价技术导则-大气环境》(HJ2.2-2018)中5.3节工作等级的确定方法，本项目1%≤P_{max}<10%，确定本次评价等级为二级，评价范围为：以排放源为中心，边长5公里的矩形区域。根据大气导则，仅对污染物排放量进行核算。

7.2.2 污染物排放量核算

（1）有组织和无组织排放量计算

<p>| 表7.2-5 大气污染物排放量核算表 |</p>
<table>
<thead>
<tr>
<th>序号</th>
<th>排污口编号</th>
<th>污染物</th>
<th>核算排放浓度（mg/m³）</th>
<th>核算排放速率（kg/h）</th>
<th>核算排放量（t/a）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>主要排放口</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>/</td>
<td>NH₃</td>
<td>0.26</td>
<td>0.016</td>
<td>0.14</td>
</tr>
<tr>
<td>2</td>
<td>1#</td>
<td>H₂S</td>
<td>0.021</td>
<td>0.00126</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>一般排放口</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>一般排放口合计</td>
<td>NH₃</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H₂S</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>有组织排放总计</td>
<td>NH₃</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H₂S</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>无组织排放总计</td>
<td>NH₃</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H₂S</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

（2）项目大气污染年排放量核算

本项目大气污染物年排放核算情况详见下表

<p>| 表7.2-6 大气污染物年排放量核算表 |</p>
<table>
<thead>
<tr>
<th>序号</th>
<th>污染物</th>
<th>年排放量（t）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NH₃</td>
<td>0.297</td>
</tr>
<tr>
<td>2</td>
<td>H₂S</td>
<td>0.0233</td>
</tr>
</tbody>
</table>

（3）污染源非正常工况排放量核算

项目非正常排放主要为6.5.1.2中非正常工程所述两种状况，非正常工况排放情况如下。

<table>
<thead>
<tr>
<th>表7.2-7 非正常工况排放情况</th>
</tr>
</thead>
<tbody>
<tr>
<td>非正常工况</td>
</tr>
<tr>
<td>状况一</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>状况二</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
根据以上两种非正常工况，核算发生一次非正常工况下的污染物排放量，具体情况见下表

<table>
<thead>
<tr>
<th>类别</th>
<th>污染物</th>
<th>发生频次及持续时间</th>
<th>非正常工况 排放速率 (kg/h)</th>
<th>排放量 (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>状况一</td>
<td>NH₃</td>
<td>发生一次，单次持续时间 0.5h</td>
<td>0.27</td>
<td>0.000135</td>
</tr>
<tr>
<td></td>
<td>H₂S</td>
<td></td>
<td>0.021</td>
<td>0.0000105</td>
</tr>
<tr>
<td>状况二</td>
<td>NH₃</td>
<td></td>
<td>0.30</td>
<td>0.00015</td>
</tr>
<tr>
<td></td>
<td>H₂S</td>
<td></td>
<td>0.023</td>
<td>0.0000115</td>
</tr>
</tbody>
</table>

7.2.3 项目大气环境防护距离

项目恶臭气体通过收集，约 90% 进入废气处理系统净化后通过 15 米排气筒排放，约 10% 的废气以无组织形式排放。

根据《环境影响评价技术导则-大气环境》（HJ2.2-2018），采用其中规定的推荐模式计算无组织源的大气环境防护距离。

按《环境影响评价技术导则-大气环境》（HJ2.2-2018）中 SCREEN3 模式进行计算，得出在厂界内及厂界外无超标点，各扩散点浓度均低于《恶臭污染物排放标准》（GB14554-93）限值，该项目不需要设置大气防护距离。

7.2.4 项目卫生防护距离

根据建设单位提供的资料，按国家《制定地方大气污染物排放标准的技术方法》（GB/T13201-91）中“有害气体无组织排放控制与工业企业卫生防护距离标准的制定方法”，设置卫生防护距离。

1、计算公式

根据《制定地方大气污染物排放标准的技术方法》（GB/T13201-91），各类工业企业卫生防护距离按下式计算：

$$\frac{Q}{C_m} = \frac{1}{A} \left(B \cdot L^2 + 0.25r^2 \right)^{0.50} \cdot L^D$$

式中：
- C_m——标准浓度限值；
- L——工业企业所需卫生防护距离，m；
- Q——排放速率，kg/h；
- A——系数；
- B——系数；
- L^2——系数；
- r——系数；
- D——系数。
R——有害气体无组织排放源所在生产单元的等效半径，m，根据该生产单元面积 S (m²) 计算，\(r = \left(\frac{S}{\pi} \right)^{0.5} \);

A、B、C、D—卫生防护距离计算系数;

Qc——工业企业有害气体无组织排放量可达到的控制水平，kg/h。

2、气象参数

按当地平均风速选取 A、B、C、D 值，见下表。

<table>
<thead>
<tr>
<th>计算系数</th>
<th>工业企业所在地近五年平均风速 (m/s)</th>
<th>卫生防护距离 L (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L ≤ 1000</td>
<td>1000 < L ≤ 2000</td>
</tr>
<tr>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>A</td>
<td><2</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>>4</td>
<td>530</td>
</tr>
<tr>
<td>B</td>
<td><2</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>>4</td>
<td>0.78</td>
</tr>
<tr>
<td>C</td>
<td><2</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>0.0014</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

注：表中工业企业大气污染源构成分为三类：

I 类：与无组织排放源共存的排放同种有害气体的排气筒的排放量，大于标准规定的允许排放量的三分之一者；

II 类：与无组织排放源共存的排放同种有害气体的排气筒的排放量，小于标准规定的允许排放量的三分之一，或者无排放同种大气污染物之排气筒共存，但无组织排放的有害物质的容许浓度是按急性反应指标确定者；

III 类：无排放同种有害气体的排气筒与无组织排放源共存，且无组织排放的有害物质的容许浓度是按慢性反应指数确定者。

3、卫生防护距离计算结果

本建设项目所在地区多年平均风速为 1.1m/s，查取有关计算系数值，经计算出的卫生防护距离见下表。

<table>
<thead>
<tr>
<th>排放源</th>
<th>排放浓度 (kg/h)</th>
<th>排放源面积 (m²)</th>
<th>与厂界最近处距离 (m)</th>
<th>工业企业设计卫生标准限值 (mg/m³)</th>
<th>卫生防护距离计算值 (m)</th>
<th>卫生防护距离取值 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>综合处理区</td>
<td>NH₃</td>
<td>0.018</td>
<td>2400</td>
<td>20</td>
<td>0.2</td>
<td>1.815</td>
</tr>
<tr>
<td></td>
<td>H₂S</td>
<td>0.0014</td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.373</td>
</tr>
</tbody>
</table>
按《制定地方大气污染物排放标准的技术方法》（GB/T3840-91）中的相关规定，同时考虑到绵阳市垃圾填埋场项目设置的卫生防护距离为500m，本项目位于绵阳市垃圾填埋场项目设置的500m卫生防护距离以内，因此，本项目不再单独设置卫生防护距离。

7.2.5 大气影响评价结论

①项目恶臭废气对地面小时平均浓度的最大贡献值较小，不会出现超标现象。

②项目恶臭废气对最近保护目标处的贡献值较小，满足相应执行标准的限值要求，对相关敏感点无明显影响。

③本项目在玉皇垃圾填埋场用地范围内建设，垃圾填埋场已设置了500m的卫生防护距离，故本项目不再单独设置卫生防护距离。

垃圾填埋场卫生防护距离内的农户均已搬迁。

综上，项目运营期恶臭气体经净化处理后达标排放，对区域大气环境影响较小。

7.3 地表水环境影响分析

7.3.1 区域地表水概况

项目纳污地表水为巩家沟，枯水期平均流量0.4m³/s。评价河段地表水水域功能为农灌，下游10km范围内无饮用水源取水口等敏感点。水环境评价等级为三级。本项目生产、生活废水排入垃圾填埋场配套污水处理站处理后达标排放，以下就污水处理站正常排放和事故状态下排放对巩家沟水质的影响进行分析。

7.3.2 工程废水排放情况

1、工程废水正常排放情况

项目废水经垃圾填埋场渗滤液处理站处理，达《生活垃圾填埋污染控制标准》（GB16889-2008）表2标准后排入下游巩家沟。其排放情况见下表。

<table>
<thead>
<tr>
<th>表7.3-1 工程废水正常排放情况</th>
</tr>
</thead>
<tbody>
<tr>
<td>分类</td>
</tr>
<tr>
<td>废水</td>
</tr>
</tbody>
</table>

| | | | | 32.19 | 5.21 | 3.00 | 6.8 | |

2、工程废水事故排放情况

项目废水事故排放情况为：项目废水未经处理直接排入巩家沟的极端情况，其排放情况见下表，排放浓度以渗滤液调节池原水浓度计。

<table>
<thead>
<tr>
<th>分类</th>
<th>产生源</th>
<th>废水种类</th>
<th>废水量 (t/d)</th>
<th>污染物排放浓度 (mg/L)</th>
<th>排放情况</th>
</tr>
</thead>
<tbody>
<tr>
<td>废水</td>
<td>本项目</td>
<td>餐厨废弃物生产、生活废水</td>
<td>194.77</td>
<td>COD_{cr} 10000, BOD_{5} 5000, NH_{3}-N 2500, SS 500</td>
<td>达到 GB16889-2008 及 GB5084-92 标准要求</td>
</tr>
</tbody>
</table>

7.3.3 工程废水影响预测

1、预测因子及预测条件

根据工程废水排放情况，确定预测因子为 COD_{cr} 和 NH_{3}-N。预测条件为枯水期，预测范围为巩家沟项目评价河段。对项目正常排放和非正常排放情况对巩家沟的影响作定量预测。

2、预测模式与模型参数

（1）预测模式

考虑对保护环境有利，预测中不考虑污染物的降解，仅考虑污染物的稀释扩散，采用《环境影响评价技术导则—地表水环境》（HJ 2.3-2018）推荐的完全混合模式。

\[C = \frac{C_{p} Q_{p} + C_{h} Q_{h}}{Q_{p} + Q_{h}} \]

式中：
- C——下游预测浓度 (mg/l)
- Ch——河流本底浓度 (mg/l)
- Cp——污染物排放浓度 (mg/l)
- Qh——河流流量 (m³/s)
- Qp——污水排放量 (m³/s)

（2）模型参数

A. 水文参数（见下表）。

<table>
<thead>
<tr>
<th>项目</th>
<th>平均流量 (m³/s)</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>农灌沟（巩家沟）</td>
<td>0.4</td>
<td>评价河段</td>
</tr>
</tbody>
</table>

表 7.3-3 巩家沟评价河段水文参数（枯水期）
B. 河流背景值：河流背景值系巩家沟在填埋场下游 1000m，即地表水现状监测 II 断面的现状值（见下表）。

表 7.3-4 污染物背景浓度

<table>
<thead>
<tr>
<th>监测断面</th>
<th>COD</th>
<th>氨氮</th>
<th>BODs</th>
</tr>
</thead>
<tbody>
<tr>
<td>背景浓度</td>
<td>32.1mg/l</td>
<td>2.97mg/l</td>
<td>5.2</td>
</tr>
</tbody>
</table>

C. 排放源强（见下表）

表 7.3-5 废水排放源强

<table>
<thead>
<tr>
<th>排放状态</th>
<th>废水排放量 Qp(m³/s)</th>
<th>废水排放浓度 Cp(mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>正常</td>
<td>0.001619</td>
<td>COD 50</td>
</tr>
<tr>
<td>事故</td>
<td>10000</td>
<td>COD 2500</td>
</tr>
</tbody>
</table>

3、预测结果

预测结果见下表。

表 7.3-6 预测评价结果 单位：mg/l

<table>
<thead>
<tr>
<th>断面</th>
<th>预测指标</th>
<th>正常排放</th>
<th>事故排放</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>现状值</td>
<td>预测值</td>
<td>贡献值</td>
</tr>
<tr>
<td>II断面</td>
<td>COD</td>
<td>32.1</td>
<td>32.17</td>
</tr>
<tr>
<td></td>
<td>NH₃-N</td>
<td>2.97</td>
<td>2.99</td>
</tr>
<tr>
<td></td>
<td>BOD₅</td>
<td>5.20</td>
<td>5.21</td>
</tr>
</tbody>
</table>

（1）工程废水正常排放对地表水的影响

项目废水正常排放时，以地表水最不利状况（枯水期）作为水质预测条件，废水进入，完全混合后 COD 浓度为 32.17mg/l, NH₃-N 浓度为 2.99mg/l, BOD₅ 浓度为 5.21mg/l, 满足《农田灌溉水质标准》（GB5084-2005），说明在确保本项目废水处理设施正常运行的情况下，项目排放废水对不会产生明显影响，不会改变现有的水域功能，因此，通过采取上述措施，从保护水环境的角度分析，本项目是可行的。项目排水主要污染物浓度接近受纳水体水质指标，项目排水不会明显改变受纳水体水质状况。

（2）工程废水事故排放对地表水的影响

事故排放时，以地表水最不利状况（枯水期）作为水质预测条件，废水进入，完全混合后 COD 浓度为 72.28mg/l, NH₃-N 浓度为 13.036mg/l, BOD₅ 浓度为 25.33mg/l, 仍可满足《农田灌溉水质标准》（GB5084-2005），不会改变现有的水域功能。但项目事故排水将会使受纳水体水质因子标准指数明显升高，导致地表水环境质量明显下降。
因此，负责处理本项目废水的企业应严格处理设施工艺管理，加强设备、设施维护，杜绝废水事故排放的产生，一旦发生事故，立即将废水通入已建事故池，可以有效减少其不利影响。

7.4 声环境影响分析

7.4.1 噪声源情况

主要的噪声设备和噪声水平详见下表

<table>
<thead>
<tr>
<th>声源</th>
<th>位置</th>
<th>源强</th>
<th>数量</th>
<th>降噪措施</th>
<th>降噪效果</th>
<th>降噪后源强</th>
</tr>
</thead>
<tbody>
<tr>
<td>分拣机</td>
<td>预处理系统</td>
<td>85</td>
<td>1</td>
<td>选择低噪声型设备、密闭厂房隔声、门窗采取双层中空隔声门窗</td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>破碎筛分机</td>
<td>预处理系统</td>
<td>85</td>
<td>1</td>
<td></td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>输送机</td>
<td>预处理系统</td>
<td>85</td>
<td>1</td>
<td></td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>离心风机</td>
<td>臭气收集系统</td>
<td>90</td>
<td>3</td>
<td>进风口安装消声器、密闭厂房隔声</td>
<td>25</td>
<td>65</td>
</tr>
<tr>
<td>冷却塔</td>
<td>循环冷却水</td>
<td>75</td>
<td>1</td>
<td>上部风机安装消声器</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>循环水泵</td>
<td>水泵房</td>
<td>85</td>
<td>3</td>
<td>厂房隔声、进出口加装橡胶接头等振动阻尼器、减振垫</td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>渣浆泵</td>
<td>预处理系统</td>
<td>85</td>
<td>8</td>
<td>厂房隔声、进出口加装橡胶接头等振动阻尼器、减振垫</td>
<td>20</td>
<td>65</td>
</tr>
</tbody>
</table>

7.4.2 声环境影响预测

1. 项目噪声源分析

（1）声级的计算

噪声衰减公式：

$$ L_p (r) = L_p (r_0) - 20 \log \left(\frac{r}{r_0} \right) $$

式中：

- $ L_p (r) $ ——距声源 $ r $ 处噪声值[dB(A)];
- $ L_p (r_0) $ ——距声源 $ r_0 $ 处噪声值[dB(A)];
- $ r_0, r $ ——受声点到声源的距离(m);

噪声叠加公式：

$$ L = 10 \log \sum_{i=1}^{n} 10^{L_i / 10} $$
式中：\(L_i \)——第 \(i \) 个声源的噪声值，\(\text{dB(A)} \);
\(L \)——某点噪声总衰减值，\(\text{dB(A)} \);
\(n \)——声源个数。

(2) 预测结果

根据噪声衰减公式对各设备声源在不同距离的衰减量进行计算，得出本工程噪声的贡献值。由于现状监测中考虑的监测点为厂界，为便于与背景相叠加，因此，预测点与现状监测点一致。各预测点噪声预测结果见下表。

<table>
<thead>
<tr>
<th>噪声源</th>
<th>距离</th>
<th>减震、隔声等治理后源强</th>
<th>距1#北厂界距离</th>
<th>距2#西厂界距离</th>
<th>距3#东厂界距离</th>
<th>距4#南厂界距离</th>
</tr>
</thead>
<tbody>
<tr>
<td>分拣机</td>
<td>150</td>
<td>65</td>
<td>85</td>
<td>220</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>破碎筛分机</td>
<td>150</td>
<td>65</td>
<td>85</td>
<td>220</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>输送机</td>
<td>150</td>
<td>65</td>
<td>85</td>
<td>220</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>离心风机</td>
<td>155</td>
<td>65</td>
<td>90</td>
<td>210</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>冷却塔</td>
<td>150</td>
<td>60</td>
<td>85</td>
<td>220</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>循环水泵</td>
<td>150</td>
<td>65</td>
<td>85</td>
<td>220</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>渣浆泵</td>
<td>155</td>
<td>65</td>
<td>90</td>
<td>210</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>环境本底值</td>
<td></td>
<td></td>
<td>58.7</td>
<td>51.3</td>
<td>53.4</td>
<td>50.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48.3</td>
<td>43.2</td>
<td>43.4</td>
<td>43.6</td>
</tr>
<tr>
<td>噪声贡献值</td>
<td></td>
<td></td>
<td>32.4</td>
<td>37.3</td>
<td>29.1</td>
<td>37.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49.5</td>
<td>44.3</td>
<td>47.8</td>
<td>46.7</td>
</tr>
</tbody>
</table>

根据预测结果分析，噪声预测值均不超标，各测点均能满足《工业企业厂界噪声标准》(GB12348-90)中的2类标准要求，工程投入运行后对区域声环境不会造成明显影响。同时，垃圾填埋场已设置500米卫生防护距离，该范围内住户均已搬迁，范围内无住户等声环境敏感目标，不会造成噪声扰民。

2. 交通噪声对环境的影响

由于项目建成后餐厨废弃物的运输进场增加了进场公路的车流量，评价采取以下模式对进厂车辆对进厂公路周边的噪声影响情况进行简单的预测分析。

垃圾运输产生的交通噪声采用如下的交通噪声计算公式：
式中:

Leq — 第 i 种运输工具(即小汽车、卡车或重型卡车), 某时的等效声级;
Li — 第 i 类车辆距行驶路面中心 7.5m 处的平均辐射声级;
Qi — 第 i 类车辆的车流量, 取 10 辆/小时;
Vi — 第 i 类车辆平均行驶速度, 取 30km/h;
T — 评价小时数, 取 1;
r — 预测点距路面中心距离, m;
k — 车流密度修正系数, 按线-点声源考虑, 取 10-20;
α — 地面吸收, 衰减因子;
△S — 附加衰减, 屏障影响等。

根据机动车辆分类，在公路上行驶的机动车分为三类, 轻型、中型和重型。其中 3.5t 及以下为轻型车; 3.5-12t 为中型车; 12t 及以上为重型车。本项目运输车均为中型车，因此，距路面 7.5m 处的平均辐射噪声级可由下式求得。

\[L_{eq} = 62.6 + 0.32V \] (中型车)

式中：V — 车速, 取 30km/h。

由上式求得的中型车距路中心 7.5m 处的平均辐射噪声级为 72.2dB(A)，项目交通噪声影响预测计算结果见下表。

<table>
<thead>
<tr>
<th>表 7.4-3 项目交通噪声影响预测计算结果</th>
<th>单位: Leq dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>车型</td>
<td>距离(m)</td>
</tr>
<tr>
<td>中型车</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

由上表可见：项目垃圾运输过程中，距离道路中心线 20m 处的噪声预测值为 45.9 dB(A), 30m 处的噪声预测值为 42.4 dB(A)。根据《声环境质量标准》(GB3096-2008)相关规定，交通主干道两侧执行 4a 类标准，4a 类标准的昼间标准
值为 70dB(A)，夜间标准值为 55dB(A)。

由此可见，当垃圾运输车不会造成噪声超标，但仍需加强管理，降低车辆运输对周围环境的影响。

3. 噪声控制措施建议

（1）从项目设备噪声厂界达标要求分析，应加强设备声源的降噪治理及车间建筑隔声效果比较，厂边界应种植高大密植乔木，以减缓设备噪声在环境中的传播强度。

（2）建议项目餐厨废弃物运输车的作业时间尽量安排在 6:00-22:00 的昼间时段内进行。

7.5 地下水环境影响分析

根据《环境影响评价技术导则 地下水环境》（HJ 610-2016），一般情况下，建设项目须对正常状况和非正常状况的情景分别进行预测。

正常状况下本项目废水排入垃圾填埋场渗滤液处理站处理达标后排放，厂区已做地面防渗等措施，不会产生地下水污染问题，因本项目主要讨论非正常工况下地下水的污染情况。

7.5.1 非正常工况地下水污染因素

储运及生产过程如操作不当，或设备、设施破损等因素，可导致项目废水、油脂泄漏等事故的发生，产生地下水污染。本项目产生的废水主要为餐厨废弃物处理产生的工艺废水，经管道排入水务集团所属填埋场渗滤液处理站处理达标后排放。项目废水在储运和传输过程中，如发生泄漏，可能对地下水造成污染事故。

本项目选取废水在储运过程发生泄漏为非正常工况进行分析预测因子选取 COD 进行预测。

7.5.2 场地水文地质条件

根据与本项目同处同一区域的绵阳市生活垃圾焚烧发电厂工程《地下水环境影响评价专题报告》，项目建设区位于巩家沟沟源宽缓凹地区，平面上呈一“C”形环状斜坡地形，地势北、西、南高而东低（见下图）。
拟建项目位于高程 470～480m 间地带，最高处为南侧堡垒梁村处丘顶，高程约 550m，韩包支渠于拟建项目外侧顺地形单行而过，场地内因工程建设削坡，边坡多基岩出露，而谷底多为人工填土不均分布（削坡物质堆积），厚度不一。

工作区缓坡及宽缓谷底多为第四系堆积层所覆盖，为农耕、林地。区内除季节性农作物外，主要为桑树、竹林和杂树、杂草分布。X106 县道从垃圾卫生填埋场西侧进场口通过，可通行大型汽车，交通方便。

西侧为垃圾卫生填埋场入口，北侧凹地为垃圾填埋场填埋库区，南侧凹地即为拟建项目所在区域，垃圾填埋场调节池、渗滤处理站位于东侧巩家沟沟首出口带。评价区地层较简单，区内第四系地层主要有人工堆积层（Q4ml）、残坡积层（Q4el+dl）、洪积层（Q4pl+dl），基岩为白垩系下统天马山组上段（K1t2）出露。岩石中发育的裂隙和溶蚀孔洞共同构成了勘察区的风化孔隙裂隙含水带。

1）含水岩组（层）

根据岩性条件、岩层的透水性和含水性来划分，区内含水岩组与地层分布一致，主要为白垩系下统天马山组上段粉砂质泥岩、泥质粉砂岩、砂岩含水岩组（K1t2）。

广泛分布于调查区，是区内主要含水岩组。岩性以砂岩（泥质粉砂岩、细粒砂岩、中粒砂岩）为主，粉砂质泥岩分布相对较少，各岩石呈不等厚互层状。受褶皱构造控制，岩层倾角较平缓，一般 1～5°。
粉砂质泥岩性软，具失水开裂特征，浅表易于形成风化裂隙，虽然裂隙微细短小，但裂隙众多，互相穿插切割形成密集网状裂隙带。泥岩虽然构造裂隙不发育，但因该岩组含有钙质成分，其可溶性较好，风化带岩层易被地下水流滤形成溶孔，因此该含水岩组含水介质不仅具有风化裂隙储水，还兼具孔隙储水的性质，含风化带孔隙裂隙水。

泥质粉砂岩、细粒砂岩溶蚀孔洞不发育，中粒砂岩未见溶孔分布，但细、中粒砂岩泥钙质孔隙式胶结疏松，易风化，且构造裂隙和层间裂隙相对粉砂质泥岩较发育。据《成都幅区域水文地质普查报告（1/20万）》资料显示，裂隙频率1.1~8.0条/米，裂隙率为1.5~2.5%，最小为0.48%，最大为5.1%。这些裂隙张开性较好，延伸较远，具有一定的地下水储集空间。在岩石露头区，岩石浅部的裂隙受风化、重力等作用，裂隙的张开、延伸度增大，且与风化裂隙、层面裂隙互相交织，构成地表浅部裂隙系统，形成良好的地下水储水空间，从而构成岩石浅部风化带孔隙裂隙含水层。

含水层（带）的厚度与风化带发育深度有关。而风化带的发育深度又与地层岩性、地质构造、地形地貌等因素有关。本次评价工作钻孔揭露，项目区岩石强风化层厚6.65~19.57m，中等风化层厚2.80~15.60m。其中沟谷区岩石风化带厚度相对较薄，强风化层厚度一般6.65~6.90m，中等风化层厚2.80~5.00m（SK2孔未揭露）左右；谷坡岩石强风化层厚14.90~19.57m，中等风化层厚6.53~15.60m。岩石深度一般在0.00~26.10m间出现溶蚀孔洞，且多分布于15.00m深度范围内，溶孔直径1~5mm，无充填，呈星点或顺层分布。

据调查，区内风化孔隙裂隙含水岩组含水层（带）底板深度24.70~31.90m，含水层（带）厚度9.48~23.51m。

经SK2、SK5孔单孔稳定流抽水试验，孔隙裂隙水含水岩组的渗透系数为0.356~0.485m/d，含水岩组的渗透系数相近，这是因为含水层介质均由细粒砂岩组成，所处地貌部位相近，因而含水岩组的渗透能力相近，同时，也说明如果含水介质不同，则含水层的渗透能力将会不同，含水介质渗透性具异向性和不均性。

据本次评价工作取样试验，细粒砂岩孔隙率为11.3%~13.3%，持水度为7.9%~10.7%，给水率为2.6%~3.4%；中粒砂岩的孔隙率为11.4%~15.7%，持水度为8.3%~12.8%，给水率为2.9%~3.1%；粉砂质泥岩孔隙率为7.8%~10.7%。
持水度为 6.7%～9.3%，给水率为 1.1%～1.4%。
由此可知，本次工作目的层一上部含水层（带）主要由粉砂质泥岩、泥质粉砂岩和砂岩的浅部风化层（带）共同组成，据钻探揭示，项目区岩石强风化层厚 6.65～19.57m，中等风化层厚 2.70～15.60m。含水层（带）底板深度 23.50～31.90m，厚度 9.35～23.51m。地下水赋存于岩石裂隙和溶蚀孔洞中。

2）隔水层
隔调查区丘坡、丘顶分布的残坡积层和凹地、沟谷内分布的洪坡积物（Q4）以粉质粘土为主，软至硬塑状，试验渗水试验其渗透系数一般在 1.97×10-5～2.66×10-5cm/s 之间，弱透水，其中谷坡厚度一般小于 2.00m，沟谷厚度多在 0.50～15.00m 左右。据本次评价工作取样试验，粉质粘土有效孔隙度为 37.5%～45.8%，持水度为 34.4%～41.7%，给水度为 2.5%～4.1%，渗透性为 3.81×10-6～9.65×10-6cm/s，为微透水层，不含水（谷坡地带）或局部含上层滞水（沟谷地带），形成区内风化带孔隙裂隙含水层（带）的相对隔水顶板。
风化带孔隙裂隙含水层（带）底板以岩石的完整程度为特征而界定，微风化岩石质新鲜，裂隙发育较缓，岩体完整，渗透性为极微透水，构成含水层下伏相对较隔水层。据钻探揭露，风化带孔隙裂隙含水层（带）下伏相对隔水层顶板深度在 24.70～31.90m 左右。

7.5.3 地下水类型及富水性
根据调查区含水介质性质及其在空间展布特征，地下水主要类型属基岩风化带孔隙裂隙水，局部尚有上层滞水分布。区内地下水的富水性与其地层岩性、地质构造特征、地貌部位关系密切。见附图：水文地质图。
（1）风化带孔隙裂隙水
风化带孔隙裂隙水广泛分布于工作区岩石浅部（上部）内，是评价区内主要的地下水资源，也是该地区分散农户日常生活和生产用水的主要水源。区内岩石以砂岩为主，次为粉砂质泥岩，岩层倾角较平缓，一般 1～5°，岩石浅部（上部）风化裂隙发育，本次钻孔揭露风化裂隙发育深度一般在 31.90m 以上，该带是地下水强烈交替循环带，地下水将岩石中钙质溶蚀、携带，形成溶孔，与风化裂隙构成孔隙裂隙网络，含风化带孔隙裂隙水，属潜水。地下水的富集程度受地质环境和地貌条件的控制，丘顶、谷坡地带地形较陡，是地下水的入渗补给和径
流区，地下水循环交替强，水力坡度大（41.34‰~76.26‰），赋存条件差，不利于地下水储存，富水性差。地形和缓的地区，网状风化裂隙比较发育，补给范围大，地下水沿着谷坡向坡底沟谷区径流、埋藏，因此，富水相对较好。沟谷底部及部分凹地因有第四系黏性土覆盖而使地下水具微承压性，从丘坡到沟谷、凹地，地下水由潜水转化为承压水。

沟谷谷底的 SK2 孔水位埋深 1.00m，SK5 孔水位埋深 1.22m，反映出上述地下水水动力及富水性特征，同时，也反映出区内风化带孔隙裂隙水富水性的不均匀性。

据调查，区内泉点出露少见，主要呈湿润状产出。分布于谷坡坡脊的 J23 井（红层井，深 18.00m）枯期时井内无水，位于谷底的 SK2、SK5 孔经抽水试验单井出水量 52.20m³/d，单位涌水量 0.047L/s•m。说明区内单井出水量较小，且表现出谷坡向谷底、钻孔出水量由小增大的现象，前者为补给径流区，后者是径流储存区，因此，富水性谷底较谷坡好。地下水富水性主要受补给面积控制，补给面积大，地下水丰富，反之，地下水贫乏。

（2）上层滞水

区内顺沟谷表部广泛分布有粉质黏土层，为农耕地。据 SK2、SK5 孔揭露可知，厚度达 14.15~15.00m，一般孔深 10.00m 以上多呈软塑状。虽然粉质黏土透水微弱，但其表部具失水开裂特征，易形成深度不大但分布较多的张裂隙。在雨季、水稻种植期，形成上层滞水。

其主要受雨季降水、季节性的水稻种植稻田水补给，次有基岩风化带孔隙裂隙水排泄补给。该类水水量小，水量、水位季节性变化大，枯水期常无水。

7.5.4 地下水补、径、排条件

工作区风化带孔隙裂隙水以地表分水岭为界，以沟谷为中心，形成一个相对独立的水文地质单元。在该水文地质单元内，丘项和丘坡一般为地下水的补给、径流区、沟谷为地下水的埋藏径流与排泄区，其总体特点是就近补给就近排泄。

项目区域地下水补、径、排示意见下图。
大气降水是区内地下水主要的补给来源，次有堰塘、季节性水渠地表水体补给。地下水接受补给区主要是含水层的露头区，其接受大气降水入渗补给量的多少又决定于有效降水量大小和包气带岩性以及地形地貌特征，当有效降水量一定时，包气带岩性的渗透性愈强，地势相对平缓地段，降水入渗补给就愈多。另外，水稻种植期的水田地表水、溪流沟水、渠水下渗也是区内地下水的另一补给来源。

区内降水充沛，多年平均降水量 810.4mm，每年的 5～9 月降水较集中，占全年降水量 83.91%，有丰富的降水补给来源，但具有明显的季节性。基岩出露区包气带岩性为砂岩、泥岩、粉砂岩，由于含水层露头区岩体直接裸露，地下水接受降水入渗补给条件较好。在缓坡、平坝及沟谷地区，包气带岩性主要为第四系粉质粘土，谷坡地带粉质粘土厚度一般小于 2m，在谷谷地带粉质粘土层厚一般在 0.50～15.00m 左右，渗透系数一般在 3.81×10^{-6}～2.66×10^{-5}cm/s 之间，渗透性等级为微至弱，为相对隔水层，受其阻隔，地下水接受补给条件较差。

区内岩石浅部风化裂隙及溶孔、溶隙发育，大气降水入渗径流途径顺畅，降水通过风化孔隙裂隙网络渗入地下，地下水接受补给后，一般根据地形顺谷坡由高向低径流。由于斜坡地带地形相对较坡底陡，水力坡度大，地下水循环交替强，因此，其径流条件较好。沟谷、凹地区地形较平缓，主要为风化带裂隙孔隙水富集埋藏区，地下水径流速度慢，径流条件相对较差。

谷坡地带 SK1 孔测得地下水水位埋深 8.39m，SK3 孔水位埋深 18.02m，SK4 孔水位埋深 11.00m，谷底（谷谷）区 SK2 孔测得水位埋深 1.00m，SK5 孔水位埋深 1.22m。谷坡 SK1→谷底 SK2 孔地下水水力坡度 76.26%，谷坡 SK3→谷底
SK2 孔地下水水力坡度 41.34‰，谷坡 SK4 → 谷底 SK2 孔地下水水力坡度 43.43‰。而谷底 SK2 → SK5 孔地下水水力坡度 14.08‰。说明谷坡地带地下水水位埋深较大，水力坡度较大，不利于地下水储存，主要为地下水沿坡向下径流带，而沟谷带地下水水位埋深较浅，水力坡度小，说明沟谷内地下水径流速度相对较慢，为地下水的埋藏径流区。因此，一般情况下地下水总体上由高向低，自谷坡向其两侧沟谷运移，至沟底（侵蚀基准面）一部分于两侧排泄，另一部分则顺沟谷形成埋藏，并向下游径流迁移。

区内地下水排泄主要通过顺沟向下游地势较低处径流排泄，泉水出露排泄少见。在拟建发电厂两侧及上游向谷坡见有地下水浸润状产出，评价区内有农户分布居住，掘井汲取地下水也是地下水另一排泄方式。综上，项目区域地下水较少，属于地下水贫水区，可大大降低建设项目对地下水环境的污染风险。

7.5.5 地下水动态特征

区内浅部风化带孔隙裂隙水主要接受大气降水补给，因此，地下水的动态变化主要受大气降水量控制，季节变化明显，同时，不同的地貌部位地下水的动态变化也不尽一致。

根据调查，在谷坡凹地、沟谷地带，民井水量、水位变化较小，地下水水位年变幅一般 0.5～2.0m，这是因为这些地带多属于地下水埋藏径流带，汇水面 积相对较大，地下水接受补给量大。当民井处于斜坡、坡脊、丘顶部位，其所处位置不利于地下水富集，主要为地下水接受补给、径流地带，地下水水量、水位变化大，如谷坡下部一般水位年变幅在 1.0～4.0m 左右，谷坡中下部一般水 位年变幅为 2.0～5.5m，而坡顶、坡脊变化最大，地下水年变幅达 10m（见表 4-2）。这些情况，说明区内浅层风化带孔隙裂隙水水量、水位随季节变化较大，降水量大时，地下水水量增加，水位上升，干旱时，地下水水量急剧减少，水位大幅下降。

表 7.5-1 不同地貌位置地下水动态变化特征表

<table>
<thead>
<tr>
<th>地貌部位</th>
<th>水位埋深（m）</th>
<th>枯、丰期水位年变幅（m）</th>
</tr>
</thead>
<tbody>
<tr>
<td>谷坡凹地下部</td>
<td>1.20</td>
<td>0.5-1.0</td>
</tr>
<tr>
<td>谷坡凹地下部</td>
<td>0.41</td>
<td>1.5-2.0</td>
</tr>
<tr>
<td>谷坡凹地下部</td>
<td>1.76</td>
<td>0.6-0.7</td>
</tr>
<tr>
<td>谷坡凹地下部</td>
<td>0.28</td>
<td>1.5</td>
</tr>
<tr>
<td>谷坡凹地下部</td>
<td>0.62</td>
<td>1.0-2.0</td>
</tr>
</tbody>
</table>
7.5.6 地下水环境影响预测与评价

7.5.6.1 预测原则

项目地下水环境影响预测应遵循相关评价导则的原则进行。考虑到地下水环境污染的隐蔽性和难恢复性，还应遵循环境安全性原则，预测评价将为各方案的环境安全和环境保护措施的合理性提供依据。

预测的范围、时段和内容根据评价等级、工程特征与环境特征，结合当地环境功能和环保要求确定，以项目对地下水水质的动态影响为重点，同时给出项目正常运行、非正常工况及事故排放工况下的预测结果。

7.5.6.2 预测方法及范围

本项目地下水评价等级为三级，本次进行预测时，采用解析法计算。污染物在地下水系统中的迁移转化过程十分复杂，本次污染物模拟预测过程不考虑污染物在含水层中的吸附、挥发、生物化学反应，模型中各项参数予以保守性考虑。由于污染物预测主要针对非正常状况下污染物运移情况，因此模型预测不考虑包气带对污染物的截留作用，假设污染物可以直通过包气带进入地下水体，最大限度地考虑污染物对研究区水体的影响。

地下水环境影响预测范围与调查评价范围一致，根据对评价范围内保护目标调查分析，本次预测层位以潜水含水层为主。

7.5.6.3 预测因子

根据导则要求，并结合项目特点，预测因子选择应在导则要求的基础上，充分考虑选取与排放的污染物有关的特征因子。预测因子为建设项目排放的污染
物有关的特征因子。根据废水排放中污染物排放量和排放浓度，本次选取对地下水环境质量影响负荷较大的CODmn和氨氮进行影响预测与评价。本项目预测因子评价标准见下表。

<table>
<thead>
<tr>
<th>评价因子</th>
<th>评价标准</th>
<th>污染浓度</th>
<th>影响浓度</th>
<th>评价依据</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODmn</td>
<td>3mg/L</td>
<td>≥3mg/L</td>
<td>0.2 mg/L</td>
<td>《地下水质量标准》（GB/T14848-2017）、《地表水环境质量标准》（GB3838-2002）</td>
</tr>
<tr>
<td>氨氮</td>
<td>0.2mg/L</td>
<td>≥0.2mg/L</td>
<td>0.025mg/L</td>
<td>《地表水环境质量标准》（GB3838-2002） III类水质标准</td>
</tr>
</tbody>
</table>

注：污染浓度依据《地下水质量标准》（GB/T14848-2017） III类水质标准，影响浓度依据各项污染物监测方法中检出限。

7.5.6.4 预测情景设置

按照《环境影响评价技术导则—地下水环境》(HJ610-2016)中相关要求，选取非正常工况情景进行预测评价，非正常工况主要指装置区、污水处理设施硬化面出现破损，管线因腐蚀或其它原因出现漏洞等情景。

本项目选取非正常工况为假设池体防渗层底面积10%发生破裂，池体为满水，池水进入地下属于有压渗透，根据达西公式计算源强，计算公式见下式，假设非正常工况泄漏30d后被发现，并采取相应措施移除污染源，计算结果见下表。

$$ Q = K_a \frac{H + D}{D} A_{裂缝} $$

式中：Q——渗入到地下的污水量，m³/d，；

Ka——垂向渗透系数，m/d；

H——池内水深，m；

D——地下水埋深，m；

A裂缝——污水池底裂缝总面积，m²。

<table>
<thead>
<tr>
<th>地下水污染的装置及构筑物</th>
<th>规模</th>
<th>垂向渗透系数</th>
<th>地下水埋深</th>
<th>破损面积</th>
<th>泄漏量</th>
</tr>
</thead>
<tbody>
<tr>
<td>废水收集池</td>
<td>面积 200m³ 池体水深 1m</td>
<td>1×10⁻⁴</td>
<td>3</td>
<td>3</td>
<td>0.346</td>
</tr>
</tbody>
</table>

由上表可知，非正常工况下废水泄漏量为 0.346m³/d，本次评价假设非正常工况泄漏30d后被发现，则废水泄露总量为 10.38m³，参照《TOC与高锰酸盐指数（CODmn）及CODc的换算关系》（吉林市环境保护监测站吉林132001），CODmn与CODc的换算比约为0.37，此项目CODc为18331，因此CODmn源强通
过 COD_{Ct} 浓度换算为 6782.47，泄露污染源强详见下表。

<table>
<thead>
<tr>
<th>预测装置</th>
<th>泄漏量</th>
<th>污染物浓度 mg/L</th>
<th>污染物泄漏量 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>废水收集池</td>
<td>10.38m³</td>
<td>6782.47</td>
<td>70.402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1322</td>
<td>13.722</td>
</tr>
</tbody>
</table>

7.5.6.5 溶质运移模型选择

根据《环境影响评价技术导则 地下水环境》（HJ610-2016）要求，地下水环境影响评价的三级评价预测方法可以选用如下解析法。

本次评价采用解析模型：一维半无限限多孔介质柱体，示踪剂持续注入预测模型，数学模型表示为：

\[
\frac{C}{C_0} = \frac{1}{2} \text{erfc}\left(\frac{x - ut}{2\sqrt{D_L} t}\right) + \frac{1}{2} \text{erfc}\left(\frac{x + ut}{2\sqrt{D_L} t}\right)
\]

式中：
- x —— 预测点距离污染源的距离，m；
- t —— 预测时间，d；
- C —— t 时刻在 x 处污染物浓度，mg/L；
- C_0 —— 污染物初始浓度，mg/L；
- D_L —— 弥散系数，m²/d；
- U —— 地下水流速，m/d。

7.5.6.6 预测参数

根据《绵阳市医疗废物集中处置中心项目（二期）环境影响报告书》地下水预测参数，渗透系数取 40m/d，地下水流速为 0.27m/d，纵向弥散系数 4.05m²/d，横向弥散系数为 0.405m²/d，COD 背景浓度根据监测数据为 0.816mg/l，氨氮背景浓度为 0.024mg/l。

7.5.6.7 预测时段

根据区域水文条件情况，区域地下水类型为基岩裂隙水，参照《环境影响评价技术导则 地下水环境》（HJ610-2016），本次地下水环境影响预测时段按照发生后 100d、1000d，10 年进行预测。

7.5.6.8 影响预测结果

将上述确定的参数带入预测模型，便可得出污染物在含水层中沿地下水流方向运移时浓度的变化情况，预测结果图见下表和图。
表 7.5-5 地下水预测结果表

<table>
<thead>
<tr>
<th>污染源</th>
<th>模拟时间 (d)</th>
<th>影响距离 (m)</th>
<th>最远超标距离 (m)</th>
<th>超标范围是否超出厂界</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD\textsubscript{Mn}</td>
<td>100</td>
<td>128</td>
<td>128</td>
<td>否</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>575</td>
<td>577</td>
<td>是</td>
</tr>
<tr>
<td></td>
<td>7300</td>
<td>3964</td>
<td>3972</td>
<td>是</td>
</tr>
<tr>
<td>NH\textsubscript{3}-N</td>
<td>100</td>
<td>134</td>
<td>135</td>
<td>否</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>596</td>
<td>599</td>
<td>是</td>
</tr>
<tr>
<td></td>
<td>7300</td>
<td>4033</td>
<td>4043</td>
<td>是</td>
</tr>
</tbody>
</table>

100d COD\textsubscript{Mn} 浓度迁移图
根据上图，COD在100d最大影响距离为128m，1000d最大影响距离为575m。30年的最大影响距离为3964m；氨氮在100d的最大影响距离为134m，1000d的最大影响距离为596m，30年的最大影响距离为4033m，综合上结果，地下水渗漏短时间影响距离范围较小，但长远来看，影响范围较大，因此一旦发生事故泄漏，必须尽快采取有效措施，减少对地下水环境的影响。

厂区周边500m范围的村民已经搬迁，因此，项目运行不会对周边居民的饮用水源造成明显影响。若少量渗漏在及时发现处理的情况下，经过制定合理的地下水污染防治措施，会将污染物对地下水环境的影响程度降低。

7.6 土壤环境影响分析

本项目属于“餐厨废弃物资源化利用技术开发及设施建设”，按照《环境影响评价技术导则——土壤环境》（HJ 964-2018），本项目属于Ⅲ类项目“一般工业固体废物处置及综合利用（除采取焚烧和填埋方式以外的）；废旧资源加工，再生利用”，占地14230平方米（≤5hm²）为小型占地，项目周边无学校、居民区等敏感点，敏感程度为不敏感，根据《环境影响评价技术导则——土壤环境（试行）》（HJ 964-2018），本项目可不开展土壤环境影响评价工作。

为了保护好厂区内土壤环境，环评认为必须将厂房内的地面用水泥进行硬化，阻断污染物与土壤直接接触的可能；同时将各种物料应贮存在可以防风、防
雨、防渗透、防泄漏的设施内，避免雨水直接接触物料。该方案实施后，将保证厂区内的土壤不会因项目的实施而丧失原有的环境功能。

7.7 固体废物环境影响分析

7.7.1 固体废物产生及处置情况

本项目固体废弃物主要包括餐厨废弃物处理工艺中分拣环节产生木塑杂物、筛分沉砂环节产生的固相物、压滤产生的滤渣、三相分离产生的废渣、厌氧发酵最后产生的沼渣、废脱硫剂、油水分离产生的油脂以及职工生活垃圾。

固废产生情况及采取的处理措施情况详见下表：

<table>
<thead>
<tr>
<th>序号</th>
<th>废渣名称</th>
<th>产生量(t/a)</th>
<th>处置措施</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>预处理废渣</td>
<td>10800</td>
<td>送垃圾焚烧发电项目焚烧处置</td>
</tr>
<tr>
<td>2</td>
<td>废脱硫剂</td>
<td>6</td>
<td>定期由供货厂家回收</td>
</tr>
<tr>
<td>3</td>
<td>废油脂</td>
<td>2000</td>
<td>外销</td>
</tr>
<tr>
<td>4</td>
<td>废润滑油</td>
<td>0.032</td>
<td>项目检修由外包公司完成，产生的固废由外包单位收运，项目不设固废暂存间</td>
</tr>
<tr>
<td>5</td>
<td>废含油手套及棉纱</td>
<td>0.004</td>
<td>项目不设固废暂存间</td>
</tr>
<tr>
<td>6</td>
<td>厌氧发酵系统产生的沼渣</td>
<td>5760</td>
<td>由垃圾焚烧项目焚烧</td>
</tr>
<tr>
<td>合计</td>
<td></td>
<td>18566.036</td>
<td>/</td>
</tr>
</tbody>
</table>

项目产生沼渣、预处理废渣直接运输至垃圾焚烧项目焚烧，不在厂区存放，产生的废油脂用于外销，产生少量的废含油手套及棉纱、废润滑油都由外包单位收运，各环节产生固废都不在场内长期存放，固废产生二次污染的可能性低。

7.7.2 运输过程中环境影响分析

本项目中所产生危险废物均委托有资质单位进行处置，危险废物运输执行转移联单制度，厂外运输由处置单位委托有资质的危险废物运输公司上门接收，运输车辆采用专门的危险废物运输车辆，具有防渗漏、防遗撒、无锐利边角、易于装卸和清洁功能：运输路线避让人口集中区；运输工具具有明显的运输警示性标示。运输单位对整个固废运输过程进行严格管控，合理规划运送时间和运输路线，将固废运输环节可能产生的环境影响降低至最小程度。

7.8 环境风险影响分析

环境风险是指突发性事故对环境（或健康）的危害程度。建设项目环境风险评价主要是对建设项目建设和运营期间发生的可预测突发性事件或事故（一般不
包括人为破坏及自然灾害引起有毒有害、易燃易爆等物质泄漏，或突发事件产生的新的有毒有害物质，所造成的对人身安全与环境的影响和损害，进行评估，提出防范、应急与减缓措施，以使建设项目事故率、损失和环境影响达到可接受水平。

7.8.1 风险评价等级和范围

（1）危险物质与临界量比值（Q）
根据《建设项目环境风险评价技术导则》（HJ/T169-2018），危险物质及工艺系统危害性（P）应根据危险物质数量与临界量的比值（Q）和行业及生产工业（M）确定。

根据《建设项目环境风险评价技术导则》（HJ/T169-2018）附录C，Q按下式进行计算:

\[Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \cdots + \frac{q_n}{Q_n} \]

式中：
- \(q_1, q_2, \ldots, q_n \)——每种危险物质的最大存在量，t；
- \(Q_1, Q_2, \ldots, Q_n \)——每种危险物质的临界量，t；

当 \(Q < 1 \) 时，该项目环境风险潜势为Ⅰ；
当 \(Q \geq 1 \) 时，将 Q 值划分为：（1）1 \(\leq Q < 10 \)；（2）10 \(\leq Q < 100 \)；（3）Q \(\geq 100 \)。本项目 Q 的确定见下表。

<table>
<thead>
<tr>
<th>序号</th>
<th>危险物质名称</th>
<th>存储方式</th>
<th>最大总存在量（t）</th>
<th>临界量(t)</th>
<th>该种危险物质 Q 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>甲烷</td>
<td>储柜</td>
<td>0.341</td>
<td>10</td>
<td>0.0341</td>
</tr>
<tr>
<td>合计</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0341</td>
</tr>
</tbody>
</table>

注：本项目生产过程沼气经提纯为生物天然气销售，沼气储柜容量为 800m³，因此沼气最大储存量为 800m³，沼气中甲烷含量≥60%，本项目以 60% 计，沼气中甲烷密度 0.71115kg/m³。

由上表可知，建设项目最大存在总量 Q 为 0.0341 小于 1，本项目环境风险潜势为 I。

（2）评价工作等级确定
根据《建设项目环境风险评价技术导则》（HJ/T169-2018）评价工作等级划分要求，确定本项目环境风险评价等级为简单分析。
由上午分析可知，本项目环境风险可做简单评价，根据《建设项目环境风险评价技术导则》（HJ 169-2018），大气环境风险评价范围为距离项目边界 3km 区域；地表水环境由于交由垃圾填满场渗滤液处理站处理，不直接对地表水环境造成风险，因此仅分析废水事故排放对污水处理厂的影响；地下水环境风险评价范围同地下水评价范围。

7.8.2 环境敏感目标概况

根据调查，本项目周边 3km 范围内主要环境敏感目标见表

<table>
<thead>
<tr>
<th>序号</th>
<th>保护目标</th>
<th>方位</th>
<th>最近距离(m)</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>1#</td>
<td>坚堡梁村</td>
<td>东</td>
<td>1000m</td>
<td>坚堡梁村 6、9 社约 60 户</td>
</tr>
<tr>
<td>2#</td>
<td></td>
<td>东北</td>
<td>600m</td>
<td>坚堡梁村 6 社散居户 8 户</td>
</tr>
<tr>
<td>3#</td>
<td></td>
<td>东北</td>
<td>1200m</td>
<td>坚堡梁村 9 社约 50 户</td>
</tr>
<tr>
<td>4#</td>
<td></td>
<td>东北</td>
<td>1400m</td>
<td>坚堡梁村 9 社约 20 户</td>
</tr>
<tr>
<td>5#</td>
<td></td>
<td>南</td>
<td>690m</td>
<td>坚堡梁村 3 社约 35 户</td>
</tr>
<tr>
<td>6#</td>
<td></td>
<td>东南</td>
<td>690m</td>
<td>坚堡梁村 6 社散居约 15 户</td>
</tr>
<tr>
<td>7#</td>
<td></td>
<td>东</td>
<td>2600m</td>
<td>老君村 5 社农户，约 50 户</td>
</tr>
<tr>
<td>8#</td>
<td></td>
<td>东北</td>
<td>2000m</td>
<td>老君村 8 社，约 20 户</td>
</tr>
<tr>
<td>9#</td>
<td>任家村</td>
<td>东南</td>
<td>2600m</td>
<td>任家村约 70 户</td>
</tr>
<tr>
<td>10#</td>
<td></td>
<td>东南</td>
<td>1300m</td>
<td>任家村 3 社农户，约 15 户</td>
</tr>
<tr>
<td>11#</td>
<td></td>
<td>东南</td>
<td>1500m</td>
<td>任家村 3 社农户，约 18 户</td>
</tr>
<tr>
<td>12#</td>
<td>高山寺村</td>
<td>东北</td>
<td>1550m</td>
<td>约 80 户</td>
</tr>
<tr>
<td>13#</td>
<td></td>
<td>北</td>
<td>1000m</td>
<td>高山寺村 10 社约 15 户</td>
</tr>
<tr>
<td>14#</td>
<td></td>
<td>北</td>
<td>1050m</td>
<td>高山寺村 7 社约 35 户</td>
</tr>
<tr>
<td>15#</td>
<td></td>
<td>北</td>
<td>1150m</td>
<td>高山寺村 9 社约 20 户</td>
</tr>
<tr>
<td>16#</td>
<td>爱民村</td>
<td>西北</td>
<td>1300m</td>
<td>约 50 户</td>
</tr>
<tr>
<td>17#</td>
<td></td>
<td>西北</td>
<td>1100m</td>
<td>爱民村散居农户，约 35 户</td>
</tr>
<tr>
<td>18#</td>
<td></td>
<td>西</td>
<td>1800m</td>
<td>爱民村散居农户，约 15 户</td>
</tr>
<tr>
<td>19#</td>
<td>草堂村</td>
<td>南</td>
<td>2000m</td>
<td>约 75 户</td>
</tr>
<tr>
<td>20#</td>
<td></td>
<td>南</td>
<td>1300m</td>
<td>草堂村散居农户，约 8 户</td>
</tr>
<tr>
<td>21#</td>
<td></td>
<td>南</td>
<td>1500m</td>
<td>草堂村散居农户，约 7 户</td>
</tr>
<tr>
<td>22#</td>
<td>斑竹村</td>
<td>西南</td>
<td>2100m</td>
<td>斑竹村 3 组农户，约 30 户</td>
</tr>
<tr>
<td>23#</td>
<td>玉泉镇场镇</td>
<td>西南</td>
<td>距厂界 710m</td>
<td>在册正住户口 288 户，非正住住户 212 户，共约 1800 人</td>
</tr>
<tr>
<td>24#</td>
<td>致旺食品厂</td>
<td>西南</td>
<td>910m</td>
<td>手工泡菜作坊</td>
</tr>
<tr>
<td>25#</td>
<td>杨家镇场镇</td>
<td>北</td>
<td>~4400m</td>
<td>评价范围外，关注目标</td>
</tr>
<tr>
<td>26#</td>
<td>石洞乡场镇</td>
<td>西</td>
<td>~5100m</td>
<td>评价范围外，关注目标</td>
</tr>
</tbody>
</table>
7.8.3 环境风险识别

环境风险识别内容包括物质危险性识别、生产系统危险性识别和危险物质向环境转移的途径识别。

物质危险性识别:包括主要原辅材料、燃料、中间产品、副产品、最终产品、污染物、火灾和爆炸伴生/次生物等。

生产系统危险性识别:包括主要生产装置、储运设施、公用工程和辅助生产设施以及环境保护设施等。

危险物质向环境转移的途径识别:包括分析危险物质特性及可能的环境风险类型，识别危险物质影响环境的途径，分析可能影响的环境敏感目标。

1、物质危险性识别

根据对生产中主要原辅材料进行识别，营运期厌氧发酵产生的沼气(主要成分为甲烷)属于 HJ169-2018 附录 B 中所列危险物质，其主要危险特性及贮存情况见表 7.8-10。

2、生产系统危险性识别

（1）生产设备风险识别

本项目生产中环境风险来源于沼气及工业粗油脂的泄漏，泄漏因素主要有:①沼气囊、储油罐泄漏;②自然因素，如地震、雷击等;③生产人员的安全卫生知识缺乏，违规操作或操作不规范导致的泄漏;④厂区安全管理制度不健全，设备检修维修制度不落实或执行不到位。

（2）输送过程风险识别

营运期沼气从沼气囊输送至发电机锅炉房过程中，由于设备的弯曲连接、阀门、输送管路等均有可能造成沼气泄漏，主要易泄漏部位如下:

①输送管道:沿气的输送管道，可能存在材料缺陷、机械损伤、内外腐蚀、焊缝裂纹或缺陷、外力破坏、施工缺陷和特殊因素等都可能导致管道局部泄漏。

②阀门:排放阀、润滑系统缺陷及管道系统的阀门、法兰等密封不好或填料缺陷，正常磨损，操作失误等易造成泄漏。

③安全装置:安全装置不可靠可能引发破裂而导致泄漏。如安全阀失效引起超压爆破而泄漏。
（3）贮存过程风险识别

尽管本项目贮存的沼气量小，但沼气主要成分为甲烷，属于易燃、易爆危险物质，潜在的事故原因包括：①厌氧发酵罐存在质量缺陷或操作不规范，导致沼气泄漏；②沼气囊因本身质量缺陷或不具备抗压性能、超期使用，而导致沼气泄漏。

3、环境风险类型及危害分析

（1）环境风险类型

根据本项目建设特点，营运期环境风险类型主要包括：①沼气泄漏、火灾、爆炸等引发的伴生/次生污染物排放；②工业粗油脂、沼液暂存罐、污水设施泄漏；③废气处理设施故障引发的污染物排放；④一般性火灾事故风险。

（2）危险物质向环境转移的途径识别

根据物质及生产系统危险性识别结果，结合营运期环境风险类型，分析得出营运期危险物质向环境转移的可能途径如下：

①沼气囊、厌氧发酵罐、沼气输送管道等部位老化、破损、腐蚀造成沼气泄漏，导致危险物质进入大气环境，沿气泄漏导致易燃物质聚集，遇明火引起燃烧或引发爆炸产生的伴生/次生污染物（CO、SO2、NOx、颗粒物等）排入大气环境。

②沼液暂存罐、污水设施等出现破裂造成沼液或废水发生泄漏，有害物质通过地表径流或雨水管道进入地表水环境，此外还可能通过垂直渗透进入地下水环境或土壤环境。

③废气处理设施发生故障导致污染物（HS、NHs）未经有效处理排入大气环境。

④生产过程中因管理不规范、操作不当等造成一般性火灾事故产生次生污染物进入大气环境，在灭火过程中事故消防废水通过地表径流或雨水管道进入地表水环境。

7.8.4 事故影响分析

7.8.4.1 事故源项分析

源项分析主要是对风险事故发生所涉及到的物质、设备等（事故源）以及发生的原因进行辨别，为环境风险事故的防治措施提供依据。
本项目具有多个事故危险源，但环境风险将主要来源于危险源的泄露，项目最大可信事故的确定是依据事故源的大小和物质特性对环境的影响程度确定。根据项目事故源识别和事故因素分析表明，沼气泄漏为重大环境污染事故隐患，因此本次环评将沼气储囊泄露作为最大可信事故，主要类型为：

（1）沼气储囊泄露扩散后引起的大气污染；

（2）沼气储囊泄露遇到明火引起火灾、爆炸事故。

7.8.4.2 风险事故发生频率估计

风险事故发生时的气象条件千差万别，具有极大的不确定性，发生事故的排放强度有多种可能，这对风险事故的后果预测就存在着极大的不确定性。

风险可表述为：

风险（后果/时间）=概率（事故数/单位时间）×危害程度（后果/每次事故）

风险的单位多采用“死亡/年”。安全和风险是相伴而生的，风险事故的发生频率不可能为 0。通常事故危害所致风险水平可分为最大接受水平和可忽略水平，一些机构和研究者推荐的最大可接受风险水平和可忽略水平见下表：

7.8.4 最大可接受水平和可忽略水平的推荐值

<table>
<thead>
<tr>
<th>机构或意见者</th>
<th>最大可接受水平(a⁻¹)</th>
<th>可忽略水平(a⁻¹)</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>瑞典环保局</td>
<td>1×10⁶</td>
<td></td>
<td>化学污染物</td>
</tr>
<tr>
<td>荷兰建设和环境部</td>
<td>1×10⁶</td>
<td>1×10⁸</td>
<td>化学污染物</td>
</tr>
<tr>
<td>英国皇家协会</td>
<td>1×10⁶</td>
<td>1×10⁷</td>
<td></td>
</tr>
<tr>
<td>Miljosty Lsen(丹麦)</td>
<td>1×10⁶</td>
<td></td>
<td>化学污染物</td>
</tr>
<tr>
<td>Travis(美国)</td>
<td>1×10⁶</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

化工企业事故单元所造成不同程度事故的发生概率和对策见下表：

表 7.8-5 各种风险水平及其可接受程度

<table>
<thead>
<tr>
<th>事故名称</th>
<th>发生概率</th>
<th>发生频率</th>
<th>对策反应</th>
</tr>
</thead>
<tbody>
<tr>
<td>管道、泵等损坏小型泄露事故</td>
<td>10⁻²数量级</td>
<td>可能发生</td>
<td>必须立即采取措施</td>
</tr>
<tr>
<td>管道、储存装置和合成釜等破裂泄露事故</td>
<td>10⁻³数量级</td>
<td>偶尔发生</td>
<td>需要采取措施</td>
</tr>
<tr>
<td>管线、阀门和储罐破损等严重泄露事故</td>
<td>10⁻⁴数量级</td>
<td>偶尔发生</td>
<td>人们对此关心，愿采取措施预防</td>
</tr>
<tr>
<td>储存装置泄漏后引起爆炸火灾等事故</td>
<td>10⁻⁵数量级</td>
<td>极少发生</td>
<td>关心和防范</td>
</tr>
</tbody>
</table>

在化工工业和其他活动中，各种风险水平的可接受程度见下表。

表 7.8-6 各种风险水平及可接受程度
<table>
<thead>
<tr>
<th>风险值</th>
<th>危险性</th>
<th>对策反应</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^3数量级</td>
<td>操作危险性特别高</td>
<td>不可接受，应立即采取对策以减少危险</td>
</tr>
<tr>
<td>10^4数量级</td>
<td>操作危险性中等</td>
<td>不需人们共同采取对策，但要投资及排除产生明火的主要原因</td>
</tr>
<tr>
<td>10^5数量级</td>
<td>与游泳事故和煤气中毒事故属同一量级</td>
<td>人们对此关心，愿采取措施预防</td>
</tr>
<tr>
<td>10^6数量级</td>
<td>相当于地震和天火的危险</td>
<td>人们并不关心这类事故的发生</td>
</tr>
<tr>
<td>10^7数量级</td>
<td>相当于陨石坠落伤人</td>
<td>没有人愿意为这种事故投资加以预防</td>
</tr>
</tbody>
</table>

据全国化工行业统计，可接受的事故风险率为 1.0×10^6，事故风险度取决于事故发生概率和事故发生的后果性（以死亡区域为评价指标）。根据有关资料统计结果，本项目沼气储存装置而言，储存设施发生泄露事故的概率为 3×10^{-7} 次/年，发生爆炸事故概率为 1.0×10^{-7} 次/年小于可接受水平的事故概率 1.0×10^{-6} 次/年，因此事故概率是可接受的。

7.8.4.3 废水处理装置事故排放分析

建设项目废水排放主要潜在的事故排放情况是厂区污水处理系统装置在运行过程中由于机械故障、操作失误及安全管理疏漏等诸多因素导致污水管网发生故障，造成大量废水下渗污染场地地下水。

本项目所排废水主要为生产废水，废水最大产生总量为 197.6 t/d，生产废水经收集后送至垃圾填埋场渗滤液处理站处理，建设单位已在厂区设置有 200 m³ 的事故池，在发生事故状态下，产生的废水可以全部排入事故池，不会排入外部地下水，因此事故发生时不会对周围水环境产生影响。综上所述，本项目污水处理设施事故风险较小。

7.8.5 环境风险防范措施

7.8.5.1 组建环保管理机构

企业拟在项目建设完成前，组建安全环保管理机构，配备管理人员，通过技能培训，承担该公司运行后的环保安全工作

7.8.5.2 总图布置和建筑物安全防范措施

项目位于绵阳市生活垃圾填埋场红线范围内，占地属于环卫用地，远距居民聚集区。厂址附近无水源地、自然保护区、文物景观等环境保护目标。厂址距最近的村庄 600 m，厂址周围环境敏感度一般。在消防设计方面，严格执行“以防为主、防消结合”的原则，严格执行国家颁布的消防法规。完善厂区的消防管理
体系和消防员的建制，配置对外联络的通讯设备和网站。全厂的总图布置执行《建筑设计防火规范》(GB50016-2014)和其他安全卫生规范的规定，并充分考虑风向因素，安全防护距离，消防和疏散通道以及人货分流等问题，有利于安全生产。本项目生产车间之间的距离，生产装置区与储罐区距离和防火间距（安全距离）均满足《建筑设计防火规范》(GB50016-2014)要求（罐区与生产车间距离20m）。

7.8.5.3 危险化学品储运安全防范措施

（1）危险化学品储存

车间和库区布置需要通风良好，保证易燃、易爆和有毒物品迅速稀释和扩散。按照规定划分危险区，保证防火防爆距离。采取以上措施后，可在事故发生时，有毒物质能及时得到控制。厂区内建筑抗震机构按当地的地震基本烈度设计。原料仓库、罐区应合理设置，危险品应按储存要求分类储存，严禁禁忌物混存。物料的搬运应轻搬、轻放，特别是金属桶装物料严禁拖、拉、甩、碰等粗鲁动作，以防包装破损引起物料泄漏或产生摩擦火花引起事故。易燃介质储罐的排气管安装阻火器。加强危险化学品的管理，设置防盗设施。加强防火，达到消防、安全等有关部门的要求。做好药品的入库和出库登记记录，明确去向。加强对职工的安全教育，制定严格的工作守则和个人卫生措施。

（2）危险化学品运输

由于原料具有易燃易爆的特性，在运输过程中具有较大的危险性，因此，运输过程中应小心谨慎，委托有运输资质和经验的单位运输。确保安全。为此，采取如下运输管理措施：

A 合理规划运输时间。避免在车流和人流高峰时段运输。

B 特殊物质的装运应做到定车、定人。定车就是要使用危险品专用运输车辆，定人就是要有经过培训的专业人员负责驾驶、装卸。保障运输过程中的安全。

C 各危险品运输车辆的明显位置应有规定的危险物品标志。

D 在各物料的运输过程中，一旦发生意外。在采取紧急处理的同时，迅速报告公安机关和环保等有关部门。必要时疏散群众，防止事态进一步扩大，并积极协助公安机关和消防人员抢险伤者和物资，使损失降低到最小程度。

E 应对各运输车辆定期维修和检修，防患于未然。保持车辆在良好的工作状态。
(3) 危险固废的环境风险防范

本项目产生的包装袋等危险固废须经过识别并分类储存。在危险固废临时存放的过程中应保证储存环境的密封性。并在贮存处设立鲜明的标志，建设方将制定严密的安全管理制度，对危险固废进行贮存与运输的监控，严防泄漏。

7.8.5.4 工艺技术设计安全防范措施

为保证安全、稳定、长周期生产，拟建工程工艺设计应提高自动化控制水平和机械化生产水平，生产装置采用 DCS 控制系统，优化操作指标。

(1) 生产设备及管道尽可能露天布置，以有利于灭火和生产；原料、产品的储存罐(易燃易爆区)与生产设备及管道应分开布置；在易燃易爆区应设置火灾和有害气体检测报警装置，各检测信号由控制室集中控制。

(2) 高层建构筑物、高设备设置避雷设施。为加强人身保护，车间和各工段操作岗位都设置防护专柜，备有防毒面具、胶靴、胶手套和防护眼镜等以供急需。

(3) 对于压力容器和高压管线，在设计中和投产后，严格按照有关压力容器的规定执行。备有应急电源，避免停电事故的发生。

生产场所应设置紧急备用槽或良好的紧急物料排放处理系统。用于收集排出的物料或停止加入物料。企业应积极进行工艺技术提升，降低生产中的危险性。应尽可能采用不产生或少产生危险及危害的新技术、新工艺。降低生产中危险化学品的使用量，减少生产场所危险化学品的储存量，改善生产中的温度和压力等工艺控制条件。加强员工操作技能培训，生产严格按照工艺规程进行。但生产工艺中需要改变工艺设计参数时，应按固定程序批准后实施。

企业应充分考虑生产停车、正常生产操作、异常生产操作及紧急事故处理时的安全对策措施和设施，并制定相应的操作规程。当生产工艺中需要改变工艺参数时，应按规定程序经批准后实施。在新工艺、新技术、新设备投产前要按新的安全操作规程。对岗位作业人员和有关人员进行专门教育，考试合格后，方能进行独立作业。

7.8.5.5 自动控制设计安全防范措施

为确保生产安全可靠运行，避免火灾带来的重大损失，在厌氧发酵系统和沼气净化处理系统，设置可燃气体探测装置和火灾报警仪。报警控制器设置在就近的控制室(操作室)内。
7.8.5.6 消防及火灾报警安全防范措施

（一）消防及火灾报警系统
根据火灾危险性等级和防火、防爆要求，建筑物的防火等级均应采用国家现行规范要求。凡禁火区均设置明显标志牌。安全出口及其安全疏散距离应符合《建筑设计防火规范》（GB50016-2014）的要求。

厂区消防用水与厂内生产、生活用水管网系统合并，在厂内按照规范要求配置消防栓及消防水炮。厂内不设消防站，由当地消防中队负责消防工作。火灾报警系统：全厂采用电话报警，报警至当地消防中队。

（二）消防废水事故池的设置
在发生火灾时，除了对周围环境空气产生影响外，事故污水也会对周围的环境水体造成风险影响，可引发一系列的次生水环境污染事故。企业应配备一定容量的消防废水事故池，以接纳事故情况下排放的消防废水，保证事故情况下不向外环境排放污水。本项目已建200m³事故应急池，满足消防废水收集到事故池贮存的要求。

本项目消防废水事故池完全依托一期

7.8.5.7 应急预案
事故应急预案是在发生事故后，按照预先制订的方案采取一系列的措施，将事故的损失降低到最小程度。工程应急预案重点如下：

（1）必须制定应急计划、方案和程序
为了使突发事故后能有条不紊的处理事故，在工程投产之前就应制定好事故应急计划和方案，以备在事故发生后有备无患。

（2）成立重大事故应急救援小组
成立由厂长、分厂长及生产、安全、环保、保卫等部门组成的重大事故应急救援小组，一旦发生事故，救援小组便及时履行其相应的职责，处理事故。

（3）事故发生后应采取紧急隔离和疏散措施
一旦发生突发事故，应及时发布警报，并在救援小组的领导下，紧急隔离危险物品，切断电源，疏散人群，抢救受害人员，同时启动消防系统。

<table>
<thead>
<tr>
<th>序号</th>
<th>项 目</th>
<th>内容及要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>危险源</td>
<td>生产装置区和灌区，存在火灾、爆炸等危害</td>
</tr>
<tr>
<td>2</td>
<td>应急计划区</td>
<td>装置区、储罐区、邻区</td>
</tr>
</tbody>
</table>
7.8.5.8 沼气爆炸事故防范措施

爆炸事故发生时，对事故发生点周围的人和装备有一定的危害性。本项目假定沼气蒸汽云爆炸事故发生时，则死亡区半径为 19.1m，重伤半径为 38.5m，轻伤半径为 58.8m，财产损失半径为 128m。当发生假定事故时，仅对厂区内部建筑产生危害，不会造成周边居民重伤和死亡等严重后果。

（1）安装可燃气体探测器：发现泄漏者立即通知操作班长，操作班长通知厂应急指挥小组。在获得相关指示后，采取以下措施：装置区应急抢险小组依据紧急停车，立即关闭所有阀门；必要时对前面生装置实施联动紧急停车；如发生大量泄漏时，可通过生产控制仪器的反馈，及时发现异常。立即停止气力输送；

（2）沼气储罐区配备应急火炬系统，当沼气储罐压力过高时，压力传感器
发出警报。应急火炬系统自动启动，多余的沼气通过应急火炬点燃，保证沼气储柜压力恢复正常。

（3）厂应急指挥小组首先通知综合协调小组到现场确认事故情况，完善应急处理措施及方案；

（4）厂应急指挥小组根据现场勘察情况，组织各应急小组实施抢险，同时联系消防队等相关部门；

（5）后勤保障应急小组监视泄漏点，并在泄漏区域内的实施禁止通行。进行现场监视；

（6）当沼气储柜压力过高、压力传感器发出警报。而应急火炬未能启动成功时，应予紧急疏散储罐区作业人员。并通知应急指挥小组汇报。由应急指挥小组启动应急预案，停止生产，并通知周围的企业居民。做好周围敏感区域的人员疏散工作。

7.8.5.9 发生物料泄漏后的具体预防与应急措施

针对沼液暂存罐、厌氧仓等区域应采取重点防渗措施，同时要求在罐区设置防渗围堰，围堰的面积可以容纳储罐全部泄漏的容积，确保不外漏。

针对物料泄漏、废弃物排放失控的部位和原因，用提前准备好的沙袋、消防等设施，进行覆盖、拦截、引流等措施。启动相应的水泵，以防止污染范围进一步扩大；同时采取相应的回收、吸附等措施清除污染物。降低对环境的影响。在事故处理过程中，要重点保护污水处理装置正常运行。一旦泄漏物料进入污水系统。将事故废水引入事故水池。以防止污水处理设施受到污染物的冲击，致处理效率降低，造成超标排放。

7.8.5.10 其他安全防范措施

（1）有足够容量的事故池，一旦发生事故，可将消防水和生产废水收集，待事故解决。生产正常后，再将废水接入填埋场渗滤液处理站进行处理，因此，超标废水外排的风险可控制在管理层面上。

（2）厂内固废必须设置专门的收集场所，做好防雨、防渗、防泄漏措施，决不允许工业固废流失。

（3）本项目运行后，如遇设备大修、自然灾害等突发事件导致该项目无法正常运行时，可将收集的餐厨废弃物经压榨脱水后送至生活垃圾焚烧厂焚烧处置。设置完善的消防报警系统，设置紧急救援站。
(4) 生产车间，仓库等附近场所要提醒人员注意的地点应按标准设置各种安全标志，凡需要迅速发现并引起注意以及防止发生事故的场所，部位。均按要求涂安全色。

(5) 企业在最高建筑物上设立风向标。如有重大事故发生，根据风向对需要疏散的人员进行疏散至安全点。

(6) 加强职工的安全教育，定期组织事故抢教演习。企业应开展安全生产的定期检查，严格实行岗位责任制，及时发现并消除隐患。制定防止事故发生的各种规章制度并严格执行。按规定对操作人员进行安全操作技术培训，考试合格后方可上岗。企业的安全工作应做到经常化和制度化。

7.8.6 环境风险投资估算

为预防风险事故的发生，本项目需在环境风险防范上投入8万元，主要风险防范措施及投资估算见表7.8-9。

<table>
<thead>
<tr>
<th>序号</th>
<th>风险防范措施</th>
<th>风险投资（万元）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>安装沼气探测器、泄漏报警装置，定期对沼气囊、管道进行安全检查，落实防火、防爆设计要求，配备足够的消防器材</td>
<td>依托一期</td>
</tr>
<tr>
<td>2</td>
<td>厌氧罐、沼液暂存罐、四周设防渗围堰，地面采取重点防渗措施，并配备泄漏防范应急物质。</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>设事故应急池，落实防腐防渗措施。</td>
<td>依托一期</td>
</tr>
<tr>
<td>4</td>
<td>制定环境风险应急预案</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>合计</td>
<td>8</td>
</tr>
</tbody>
</table>

7.8.7 环境风险评价

本项目环境风险简单分析内容见表7.8-10。

| 表7.8-10 建设项目环境风险简单分析内容表 |
|-----------------------------|-----------------------------|-------------|-------------|---------------|---------------|-------------|-------------|---------------|
| 建设项目名称 | 绵阳市餐厨废弃物资源化利用和无害化处理项目扩建100t/d生产线项目 |
| 建设地点 | 四川省 | 绵阳市 | 涪城区 | 玉皇镇 | 坚堡梁村 |
| 地理坐标 | 经度 | 104.716290315 | 纬度 | 31.300848068 |
| 主要危险物质及分布 | 沼气囊：沼气（甲烷） |
| 环境影响途径及危害后果 | 大气：沼气泄漏危险物质直接排入大气环境；废气处理设施非正常工况下污染物进入大气。
| | 地表水：沼液暂存罐、厌氧发酵罐破裂造成物料泄漏。
| | 地下水、土壤：沼气燃烧引发爆炸导致厌氧系统沼液、沼渣泄漏，通过垂直渗透进入地下水环境或土壤环境。 |
| | 1、沼气囊设安全泄漏报警装置和沼气探测器，定期对沼气囊、 |

131
风险防范措施要求

1. 管道惊醒安全检查，落实防火、防爆设计要求，配备足够的消防器材。
2. 厌氧罐、沼液暂存罐四周设高防渗围堰，地面采取重点防渗措施，并配备泄漏防范应急物质。
3. 严格执行环评及相关法律法规要求，定期开展设备维护，保证其有效运行和去除效率；制定环境风险应急预案。

风险防范措施要求

填表说明（列出项目相关信息及评价说明）：

本项目主要危险物质为沼气（主要成分为甲烷），主要分布在沼气囊，项目环境风险潜势为I，评价等级为简单分析，在落实环评提出的防范措施后，环境风险可控。

综上所述，本项目环境风险潜势为I，营运期落实本报告提出的各项措施，建立和落实各项风险预警防范措施和事故应急预案，杜绝重大安全事故和重大环境污染事故的发生，可使项目建成后风险水平处于可接受程度。

7.9 餐厨垃圾运输的影响及措施建议

本项目餐厨废弃物的收运工作由绵阳市环卫处负责，在餐厨废弃物的收集过程中，根据建设部等三部局的要求“建城[2000]120号文件”，对本项目餐厨废弃物的收运系统应严格执行该文件的要求，具体环保要求如下：

1. 餐厨垃圾收集和运输应密闭化，防止暴露、散落和滴漏。应采用封闭式收集和运输方式，严禁使用敞开式收集和运输方式。
2. 结合资源回收和利用，加强对大件垃圾的收集、运输和处理。
3. 严格禁止危险废物进入餐厨垃圾，尽量减少含氯垃圾的进入。
4. 定期对垃圾车、垃圾池进行消毒、灭菌工作，防止疾病的蔓延和传播。
5. 保证餐厨垃圾全部收集至餐厨垃圾无害化处理厂，避免餐厨垃圾在没有进行可靠处理的情况下进入食物链，危及人民群众的身体健康和社会的稳定，不给城市留下后患。

同时，根据《餐厨垃圾处理技术规范》（CJJ184-2012），对餐厨垃圾的收集和运输提出以下要求：

1. 餐饮垃圾的产生者应该对产生的餐饮垃圾进行单独存放和收集，餐饮垃圾的收运者应对餐饮垃圾实施单独收运，收运中不得混入有害垃圾和其他垃圾。
2. 餐饮垃圾不得随意倾倒、堆放，不得排入雨水管道、污水排水管道、河道、公共厕所和生活垃圾收集设施中。
3. 对餐饮单位的餐饮垃圾应实行产量和成分登记制度，并宜采取定时、定
点的收集方式。

4. 焦炸废油应单独收集和运输，不宜与餐饮垃圾混合收集。

5. 餐余垃圾宜实施分类收集和分类运输。

6. 餐厨垃圾应采用密闭、防腐专用容器盛装，采用密闭式专用收集车进行收集，专用收集车的装载机构应与餐厨垃圾盛装容器相匹配。

7. 餐厨垃圾应做到日产日清。采用餐厨垃圾饲料化和制生物质腐植酸的处理工艺时，其餐厨垃圾在存放、运输过程中应采取防止发生霉变的措施。

8. 餐厨垃圾运输车辆在任何路条件下不得泄漏和洒落。

9. 餐厨垃圾宜直接从收集点运输至处理厂。产生量大、集中处理且运距较远时，可设餐厨垃圾转运站，转运站应采用非暴露式转运工艺。

10. 运输路线应避开交通拥挤路段，运输时间应避开交通高峰时段。

11. 餐厨垃圾运输车辆、卸料宜为机械操作。

餐厨垃圾运输路线沿途避开了人流量大的街道、集市，避免了上下班高峰期，选择运输路线合适；按照运输规定使用合格车辆、司机需有相应行车资格，严防震动、撞击、重压和倾倒，防止垃圾倾倒。

本项目建成后，交通运输量比现状有较大的增加。本项目建成初期，运输量相对较少，要求运输车辆均采用封闭式运输，且避免上下班高峰期和集市时间，运输车辆的作业时间尽量安排在 6:00-22:00 的昼间时段内进行，如确需夜间运输，则夜间运输时的垃圾运输应控制在 10 车次/小时以下，避免交通噪声扰民。

以上各项要求必须设专人进行管理，人员要固定，所有工作人员应经过严格的职业技术培训和责任心教育。
8 环境保护措施及其可行性论证

8.1 废气污染防治措施及其可行性论证

本项目运营期废气包括恶臭气体和锅炉废气。

恶臭气体主要来自餐厨垃圾预处理系统（内设分拣机、压滤机、输送机等设备）、餐厨垃圾其它处理单元（包括卸料大厅、均质池和沼渣脱水等作业区）。恶臭气体的主要成分为 H₂S 和 NH₃，恶臭气体挥发性较大，易扩散在大气中，而且部分气体有毒、刺激性气味，需要进行除臭处理。

餐厨垃圾处理过程中厌氧发酵产生沼气，其主要成分为甲烷，与天然气成分类似，本项目二期与一期产生沼气经提纯后成为生物天然气销售。

8.1.1 恶臭废气治理措施

（1）无组织臭气处理

对于厂区无组织臭气采用植物喷淋液除臭。通过高压将植物液雾化到站内污染空间内分解臭气，改善站内空气质量。本项目共配置两套植物液喷淋除臭系统，其中一套覆盖卸料车间和沼液离心脱水区，另一套覆盖预处理车间。

无组织臭气处理工艺见下图

由于不断有新的垃圾进入车间，垃圾会不断散发臭气到空气中。对于已经散发到空气中的臭气，本方案采用植物液雾化除臭装置进行处理。通过高压将植物液雾化到站内污染空间内分解臭气，改善站内空气质量。本项目共配置两套植物液喷淋除臭系统，其中一套覆盖卸料车间和沼液离心脱水区，另一套覆盖预处理车间。植物液喷淋除臭系统由高压喷雾主机、供液管路和雾化喷嘴组成。系统的布置是根据污染环境尺寸及臭气分布情况来确定雾化喷嘴的布置数量。一般单个雾化喷嘴覆盖面积 10~15m²，喷喷安装间距 3m，安装高度≥3.5m。植物喷淋液处理：植物液雾化除臭装置是将植物除臭液通过专用设备喷洒成雾状，在微小的
液滴表面形成极大的表面能。液滴在空间扩散的半径 ≤ 0.04mm。液滴有很大的比表面积，形成巨大的表面能，能有效地吸附在空气中的异味分子，同时也能使吸附的异味分子立体结构发生改变，变得不稳定。此时，溶液中的有效分子可以向臭气分子提供电子，与臭气分子发生氧化还原反应，同时，吸附在液滴表面的臭气分子也能与空气中氧气发生反应。经过植物作用，臭气分子将生成无毒无味的分子，如水、无机盐等，从而消除臭气。

（2）有组织臭气处理

本方案主要选用碱洗+生物处理+光催化氧化除臭组合处理工艺对运行过程中产生的臭气进行处理。车间内的臭气通过引风机的作用，由收集管道进入碱洗塔对废气中油脂、含酸性成分的恶臭气体进行处理，再经过生物滤池进行生物除臭处理，为确保臭气达标排放，最后在系统的末端设置光催化氧化除臭装置进行最后一级处理。处理工艺图见下图

有组织臭气处理工艺方框图

预洗单元-化学吸收法

通常以碱液如氢氧化钠溶液、碳酸钠、氢氧化钙溶液、氨水等作为硫化氢的吸收液，通过各类传质设备如填料塔，喷淋塔等进行反应。硫化氢吸收设备应该选择高传质效率的吸收塔，或者多塔串联，才能达到要求，但这样的话将增加气体的输送阻力，增加风机的功率消耗。

硫化氢吸收设备工艺流程：废气经过风机抽送进入高效传质吸收塔，利用经过选择的针对硫化氢气体有高吸收反应能力的吸收剂进行吸收反应，硫化氢气体被截取，其净化气体排入大气，吸收剂饱和后排出。吸收剂也可以通过解析后回
用。

化学吸收法主要采用化学介质（NaOH、NaCl 或 NaClO）与 H₂S 等无机类致臭成分进行反应，从而达到脱臭目的。化学吸收脱臭法耐冲击负荷强，可间歇工作，工作方式灵活。化学法对 H₂S 等的吸收比较彻底，速度快；但对硫醇、挥发性脂肪酸的去除比较困难，不能保证完全消除异味。

生物过滤单元-生物除臭法

生物过滤单元：生物除臭法就是将微生物固定附着在多孔性介质填料表面，并使污染物在填料床层中进行生物处理，挥发性有机污染物等吸附在空隙表面，被空隙中的微生物所耗用，利用微生物新陈代谢生命活动将废气中的有害物质转变为简单的无机物及细胞质并降解成 CO₂、H₂O 和中性盐。

污染物 + O₂ → 细胞物质 + CO₂ + H₂O

![图 8 微生物除臭原理图](image)

恶臭废气被微生物菌种分解吸收在生物体内，在微生物大量繁殖的同时达到了去除恶臭废气的目的。在生物填料上，微生物菌种吞食了恶臭废气后大量生长繁殖，给大量的微生物原生动物造了大量养料，促进了原生动物的生长繁殖：细菌—藻类—原生动物，从而形成了一条食物链，保持了系统的良性循环。

微生物细胞对臭气的分解过程见下图。
微生物细胞对臭气的分解过程

微生物分解恶臭成分的化学反应式:
硫化氢 \(\text{H}_2\text{S} + 2\text{O}_2 \rightarrow \text{H}_2\text{SO}_4 \)
甲硫醇 \(2\text{CH}_3\text{SH} + 7\text{O}_2 \rightarrow 2\text{H}_2\text{SO}_4 + 2\text{CO}_2 + 2\text{H}_2\text{O} \)
甲硫醚 \((\text{CH}_3)_2\text{S} + 5\text{O}_2 \rightarrow \text{H}_2\text{SO}_4 + 2\text{CO}_2 + 2\text{H}_2\text{O} \)
二甲二硫 \(2(\text{CH}_3)_2\text{S}_2 + 13\text{O}_2 \rightarrow 4\text{H}_2\text{SO}_4 + 4\text{CO}_2 + 2\text{H}_2\text{O} \)
氨 \(\text{NH}_3 + 2\text{O}_2 \rightarrow \text{HNO}_3 + \text{H}_2\text{O} \)
三甲胺 \(2(\text{CH}_3)_3\text{N} + 13\text{O}_2 \rightarrow 2\text{HNO}_3 + 6\text{CO}_2 + 8\text{H}_2\text{O} \)

从反应式可以看出恶臭气体经微生物反应后会生成硫酸、硝酸等酸性物质，使系统 PH 值下降。系统运行时应考虑 PH 值调节。

光催化氧化是在外界可见光的作用下发生催化作用，光催化氧化反应是以半导体及空气为催化剂，以光为能量，将有机物降解为 \(\text{CO}_2 \) 和 \(\text{H}_2\text{O} \) 及其它无毒无害成份。

光催化氧化除臭系统原理示意图
利用人工紫外线光波作为能源，配合纳米 TiO₂ 催化剂，废气经光催化氧化处理后可达到净化的更理想的效果。在光催化氧化反应中，通过紫外光照射在纳米 TiO₂ 催化剂上，纳米 TiO₂ 催化剂吸收光能产生电子跃迁和空穴跃迁，经过进一步的结合产生电子-空穴对，与废气表面吸附的水份（H₂O）和氧气（O₂）反应生成氧化性很活泼的羟基自由基（OH⁻）和超氧离子自由基（O₂⁻、O⁻）。能够把各种有机废气如醛类、苯类、氨类、氮氧化物、硫化物以及其它 VOC 类有机物及无机物在光催化氧化的作用下还原成二氧化碳（CO₂）、水（H₂O）以及其它无毒无害物质，经过净化之后的废气分子被活化降解，臭味也同时消失了，起到了废气除臭的作用。

绵阳市餐厨废弃物资源化利用和无害化处理项目一期工程中在预处理车间、离心脱水车间无组织排放区域采用植物液喷淋法来达到除臭的目的，预处理车间设备采用组合式生物除臭方法使用效果较好，该套系统处理能力已经考虑二期新增处理容量，能够满足本工程的臭气处理需要。本工程产生的臭气全部接入一期工程臭气处理系统进行处理，并且新增碱洗和光催化氧化除臭，处理措施可行。

8.1.2 排气筒设置合理性

本项目排气筒依托一期：1 根 15m 排气筒，按照《大气污染物综合排放标准》规定，排气筒应高于周围 200 米建筑 5m，经调查，项目周边没有高于 10m 的建筑。

本项目废气经过预处理后能够达到《大气污染物综合排放标准》(GB16297-1996) 表 2 中浓度限制标准，各项污染物均能做到达标排放，本项目各排气筒设置合理。

8.2 地下水污染防治措施及其可行性论证

正常工况下，项目废水排到垃圾填埋场渗滤液处理站经过处理后达《生活垃圾填埋污染控制标准》(GB16889-2008) 表 2 标准后，排入下游巩家沟，不会对地下水造成明显影响；但在餐厨废弃物预处理和沥出水收集、处理过程中，不可避免会发生跑、冒、滴、漏现象，如不采取合理的防治措施，则污染物有可能渗入地下水，从而影响地下水环境。尤其是在非正常工况或者事故状态下，如沥出水、沼液泄漏等情况下，污染物和废水会渗入地下，对地下水造成污染。
针对项目可能发生的地下水污染，本项目地下水污染防治措施按照“源头控制、分区防治、污染监控、应急响应”相结合的原则，从污染物的产生、入渗、扩散、应急响应全方位进行控制。

8.2.1 污染源控制措施

本项目将选择先进的、成熟的、可靠的工艺技术和设备，并对产生的废物进行合理的回用和治理，以尽可能从源头上减少污染物排放；严格按照国家相关规范要求，对工艺、管道、设备、污水储存及处理构筑物采取相应的措施，以防止和降低污染物的跑、冒、滴、漏，将污染物泄漏的环境风险事故降低到最低程度：优化排水系统设计，沥青水、工艺废水经管道排入厌氧发酵系统，沼液脱水后产生的废水与冲洗废水（地面、设备、车辆）经管道排入垃圾填埋场渗滤液处理站处理达标后外排；管线敷设尽量采用“可视化”原则，即管道尽可能地上敷设，做到污染物“早发现、早处理”，以减少由于埋地管道泄漏而可能造成的地下水污染。

车间及装置区地坪、污水池体、沟渠做好防渗措施，以降低废水和初期雨水渗入地下污染地下水的环境风险。

8.2.2 地下水防治分区

结合全厂各生产设备、贮存与运输装置、污染物贮存与处理装置、事故应急装置等的布局，根据可能进入地下水环境的各种有毒有害原辅材料、中间物料和产品的泄漏（含跑、冒、滴、漏）量及其他各类污染物的性质、产生量和排放量，将全厂主要生产单元划分为重点污染防治区和一般污染防治区。

表 8.2-1 全厂污染防治分区情况一览表

<table>
<thead>
<tr>
<th>区域名称</th>
<th>分区类别</th>
<th>措 施</th>
</tr>
</thead>
<tbody>
<tr>
<td>生产装置区</td>
<td>卸料大厅</td>
<td>重点污染防治区</td>
</tr>
<tr>
<td></td>
<td>接料预处理区</td>
<td>重点污染防治区</td>
</tr>
<tr>
<td></td>
<td>工艺组合水池</td>
<td>重点污染防治区</td>
</tr>
<tr>
<td></td>
<td>厌氧沼液脱水区</td>
<td>重点污染防治区</td>
</tr>
<tr>
<td></td>
<td>油水分离区及贮油罐</td>
<td>重点污染防治区</td>
</tr>
<tr>
<td></td>
<td>厌氧发酵罐区</td>
<td>重点污染防治区</td>
</tr>
<tr>
<td></td>
<td>沼气净化处理区及沼气柜</td>
<td>一般污染防治区</td>
</tr>
<tr>
<td></td>
<td>主控室</td>
<td>一般污染防治区</td>
</tr>
<tr>
<td></td>
<td>空压站</td>
<td>一般污染防治区</td>
</tr>
<tr>
<td></td>
<td>冷却塔</td>
<td>一般污染防治区</td>
</tr>
<tr>
<td></td>
<td>锅炉房</td>
<td>一般污染防治区</td>
</tr>
<tr>
<td></td>
<td>机修间</td>
<td>一般污染防治区</td>
</tr>
<tr>
<td>环保设施</td>
<td>除臭系统装置区</td>
<td>重点污染防治区</td>
</tr>
<tr>
<td></td>
<td>固废暂存间</td>
<td>重点污染防治区</td>
</tr>
</tbody>
</table>
8.2.3 地下水污染防治措施

本项目可能造成地下水污染的途径主要有：工艺废水等渗漏进入地下水，全厂生产车间区应采取防渗措施，同时全厂废水应采用管道输送，可有效避免废水渗入地下，对地下水环境产生影响。

项目必须强化地下水防渗措施，以防止区域地下水因项目建设而受到污染。具体防治措施如下：

1）实施清洁生产及各类废物循环利用的具体方案，减少污染物的排放量；防止污染物的跑冒滴漏，将污染物的泄漏环境风险事故降到最低限度；

2）对厂内排水系统和污水暂存池体及排放管道均做防渗处理；工艺管线应地上敷设，若确实需要地下敷设时，应在专设的管沟内敷设，管沟应做防渗透处理并设置排水系统；

3）工艺管线，除与阀门、仪表、设备等连接可以采用法兰外，应尽量采用焊接；

4）管道低点放净口附近宜设地漏、地沟或用软管接至地漏或地沟，不得随意排放；

5）分区防渗，在重点防渗区域（项目卸料大厅、接料预处理区、工艺组合水池、厌氧沼液脱水区、油水分离水及贮油罐区、厌氧发酵罐区）采用“环氧树脂膜+抗渗混凝土+刚性垫层”防渗处理（厚度不宜小于100mm，渗透系数≤1.0×10⁻⁸cm/s），并设置地下水污染监控系统，防止地下水污染；一般防治区域（沼气净化处理区及沼气柜、主控室、空压站、冷却塔、锅炉房、机修间）应采取防渗混凝土地坪（渗透系数≤1.0×10⁻⁷cm/s）。

6）设备和管道检修、拆卸时必须采取措施，应收集设备和管道中的残留物质，不得任意排放；

7）排水系统中的集水坑、污水池、雨水口、检查井、阀门井、水封井等所有构筑物均应采用防渗钢筋混凝土结构；

8）项目各污水池、排污管沟均做防渗处理，并修建雨水沟，实行雨污分流；

9）定期进行检漏监测及检修，强化各相关工程的转弯、承插、对接等处的防渗，做好隐蔽工程记录，强化防渗工程的环境管理。

10）建立地下水风险事故应急响应预案，明确风险事故状态下应采取的封闭、
截留等措施；

综合以上所述，若企业在管理方面严加管理，并配备必要的设施，则可以将项目建设及营运对地下水的污染可以减小到最小程度。

8.2.4 地下水污染应急预案、应急处置及管理

应急预案：环境要求企业制定专门的地下水污染事故应急预案并与其他应急预案相协调。应急预案编制组应由应急指挥、环境评估、环境生态恢复、生产过程控制、安全、组织管理、医疗急救、监测等方面的专业人员及专家组成，制定明确的预案编制任务、职责分工和工作计划等。

应急处置：当发生地下水异常情况时，按照制定的地下水应急预案采取应急措施。组织专业队伍对事故现场进行调查、监测，查找环境事故发生地点，分析事故原因，将紧急事件局部化，采取包括切断生产装置或设施、设置围堤等拦堵设施、疏散等，防止事故扩散、蔓延及连锁反应，缩小地下水污染事故对人、环境和财产的影响。

管理措施：加强企业生产、操作、储存、处置等场所的管理，建立一套从企业领导到企业班组层层负责的管理体系。重点污染防治区所在生产车间，每一操作组对其负责的区域建立台账，记录当班的生产状况是否正常。对于机泵、阀门、法兰、管道连接交叉等有可能产生泄漏处，设置巡视监控点，纳入正常生产管理程序中。

综合以上所述，若企业在管理方面严加管理，并配备必要的设施，则可以将项目建设及营运对地下水的污染可以减小到最小程度。

8.3 噪声污染防治措施及其可行性论证

根据建设项目可行性研究报告及平面布置分析，本项目的主要设备噪声源包括分拣机、破碎筛分机、输送机、冷却塔、及各类辅助设备如泵、风机等产生的动力机械噪声。

对于设备噪声，设计中除采用低噪音的设备、材料外，对主要的噪声源采取减振、消声、隔声等防治措施。具体措施如下：

1、厂区总体设计布设时，将生产区与办公区分开，将主要噪声源尽可能布置在远离办公的地方，高噪声设备集中布置于厂房内，以防噪声对工作环境的影响。
2、在运行管理人员集中的控制室内，门窗处设置吸声装置（如密封门窗等），室内设置吸声吊顶，以减少噪声对运行人员的影响，使其工作环境达到允许的噪声标准。

3、尽可能选用低噪声的设备和机械。对风机等高噪声设备采取减振、安装消音器、隔声等方式。利用建筑物的隔声作用，减弱噪声的影响。

4、餐厨废弃物运输车辆对道路两旁居住人群带来影响，因此应控制车辆行驶速度，改善路面状况，尽量避免在夜间运输餐厨废弃物。

5、对可能产生振动的管道，特别是泵和风机出口管道，采取柔性的连接的措施，以控制振动噪声。

6、厂区加强绿化，以起到降低噪声的作用。

采用以上措施后，厂界噪声值控制在《工业企业厂界环境噪声排放标准》（GB12348-2008）2类标准以内。同时，垃圾填埋场已设置500m卫生防护距离，在该500m距离内无住户等声环境敏感目标，不会造成噪声扰民。

综上所述，项目噪声防治措施均为现行通用、可行的措施，总体经济技术可行。

8.4 固体废物污染防治措施及其可行性论证

本项目固体废弃物主要包括餐厨废弃物处理工艺中分拣环节产生木塑杂物、筛分沉砂环节产生的固相物、压滤产生的滤渣、三相分离产生的废渣、厌氧发酵最后产生的沼渣、废脱硫剂、油水分离产生的油脂等。

处置措施如下：

1、预处理系统产生的废渣（包括分拣粗杂、破碎筛分细杂、沉砂、砂砾、压滤产生的滤渣及三相分离产生的废渣），定期送垃圾焚烧发电项目焚烧处置。

2、沼气脱硫产生的废脱硫剂，定期由供货厂家回收。

3、油脂定期外销。

4、厌氧发酵系统产生的沼渣，脱水后送垃圾焚烧项目焚烧处置。

5、生活垃圾定期送垃圾焚烧发电项目焚烧处置。

综上，项目大部分固废均送垃圾焚烧发电项目进行焚烧处置，其余固废均得到妥善处置，各固废处置去向明确，处置方法经济技术较为可行。
8.5 废水防治措施及其可行性论证

8.5.1 废水污染源分析

本项目运营期废水包括餐厨废弃物处理工艺产生的废沼液，地面、车辆及设备冲洗废水和员工生活污水等。

8.5.2 拟采取的防治措施

项目各类废水汇合后统一排入垃圾填埋场渗滤液处理站一并进行处理。

8.5.3 垃圾填埋场渗滤液处理站渗滤液处理措施论证

（1）处理能力：垃圾填埋场渗滤液处理站总处理能力为330t/d，目前此填埋场仅接收来自餐厨项目产生的废水和其本身填埋场产生渗滤液，原医废项目废水转向附近焚烧发电厂渗滤液处理站处理。目前垃圾填埋场渗滤液处理站实际处理量为220t/d，其中垃圾填埋场渗滤液120t/d，餐厨一期项目100t/d，本餐厨项目二期预计增加废水97.6t/d，富余12.4t/d，可以满足其处理能力。

（2）处理工艺：本项目废水主要由厌氧发酵系统废水、冲洗废水组成，主要为有机类污染物，其COD、BOD₅、NH₃-N浓度高，可生化性较好，与垃圾渗滤液的污染物成分及浓度类似。生活垃圾填埋场渗滤液处理站采用“UASB 厌氧反应池+MBR 膜-生物反应器+RO 反渗透膜装置”相结合的处理工艺，主要生化处理单元由 UASB 厌氧处理系统和膜生物反应系统完成，通过厌氧和好氧生化处理，实现去除 COD、BOD₅、NH₃-N 的目的，其处理工艺能够满足其处理效果。
MBR，又称膜生物反应器，是生物处理与膜技术相结合的一种工艺，与传统工艺相比，MBR 用膜分离技术代替了传统的泥水分离技术，膜分离技术的高效性决定了MBR 相对传统生化工艺有如下优势:

1）水力停留时间与泥龄分离；
2）出水水质高于传统生化工艺；
3）占地面积小；
4）耐冲击性能强；
5）处理效果依赖于渗滤液的可生化性。

MBR 系统主要包括反硝化池、硝化池、超滤清水池、膜分离系统、曝气系统、消泡系统、冷却系统和控制系统等组成。

膜分离工艺应用于渗滤液处理具有以下特性。

1）最低程度的膜结垢和污染现象；
2）膜使用寿命长；
3）组件易于维护；
4）过滤膜片更换费用低；
5）出水水质好；
6）出水稳定, 受外界因素影响小；
7）运行灵活；
8）建设周期短，调试、启动迅速；
9）自动化程度高，操作运行简便，占地面积小，可移动性能强。

进水水质要求

垃圾填埋场渗滤液处理站设计进水水质如下：

<table>
<thead>
<tr>
<th>项目</th>
<th>COD (mg/l)</th>
<th>BOD5 (mg/l)</th>
<th>NH3-N (mg/l)</th>
<th>TN (mg/l)</th>
<th>SS (mg/l)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>数值</td>
<td>10000</td>
<td>5000</td>
<td>2500</td>
<td>3000</td>
<td>500</td>
<td>6-9</td>
</tr>
</tbody>
</table>

本项目废水进入调节池（18000 m³）调节水质后，各污染物浓度可满足上述处理站进水水质要求。

8.6 餐厨垃圾收运过程污染防治措施

本项目餐厨垃圾收运过程应严格依照《餐厨垃圾处理技术规范》
（CJJ184-2012）等有关要求执行，主要做好以下要求：

1、设置符合标准的餐厨废弃物收集容器；

2、按照环境卫生作业标准和规范，在规定的时间内及时收集、运输餐厨废弃物。每天到餐厨废弃物产生单位清运餐厨废弃物不得少于一次；

3、用于收集、运输餐厨废弃物的车辆，应当为全密闭自动卸载车辆，确保密闭、完好和整洁，并喷涂规定的标识标志；

4、餐厨废弃物产生、收集、运输和处置实行联单制度；

5、建立餐厨废弃物收集、运输台账制度，收集、运输台账应当每月向当地人民政府市容环境卫生主管部门报送一次；

6、餐饮垃圾的产生者应对产生的餐饮垃圾进行单独存放和收集，餐饮垃圾的收运者应对餐饮垃圾实施单独收运，收运中不得混入有害垃圾和其它垃圾；

7、餐饮垃圾不得随意倾倒、堆放，不得排入雨水管道、污水排水管道、河道、公共厕所和生活垃圾收集设施中；

8、餐厨垃圾运输车辆在任何路面条件下不得泄露和遗洒；

9、运输路线应避开交通拥堵路段，避免上下班高峰期，选择合适运输路线，运输时间应避开交通高峰时段。

8.7 绿化

本工程综合考虑排放污染物的性质和地区气象条件，在处理场内空地、道路两边均考虑绿化，提高绿化水平，利用植物净化空气，调节气温，减弱噪声，美化环境，提高环境的自净能力，园区绿化率达到 23%。

8.8 环保投资一览表

项目主要环保投资见下表

<table>
<thead>
<tr>
<th>序号</th>
<th>治理项目</th>
<th>建设内容</th>
<th>投资额（万元）</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>大气治理</td>
<td>除臭</td>
<td>1、在预处理系统及沼渣脱水系统设植物液喷雾装置，共约 90 个喷嘴。</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2、在综合处理车间卸料口和组合水池（地上式）设置集气罩，在卸料大厅和综合处理车间采用整体换气，上述臭气通过离心风机引入生物滤池处理。</td>
<td>/</td>
</tr>
<tr>
<td>序号</td>
<td>治理项目</td>
<td>建设内容</td>
<td>投资额 (万元)</td>
<td>备注</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td>生物滴滤池（3座）及辅助设备</td>
<td>/</td>
<td>依托一期</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>排气筒（1座）：高 15m，内径 1.2m</td>
<td>/</td>
<td>依托一期</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>卸料厅进出口处设置风幕，防止卸料厅臭气外溢</td>
<td>/</td>
<td>依托一期</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>新增除臭设备</td>
<td>50</td>
<td>依托一期</td>
<td></td>
</tr>
<tr>
<td>沼气净化</td>
<td>粗过滤器+干式脱硫塔（2台）+精过滤器</td>
<td>/</td>
<td>依托一期</td>
<td></td>
</tr>
<tr>
<td>锅炉烟气</td>
<td>排气筒（1座）：高 15m，内径 0.4m</td>
<td>/</td>
<td>依托一期</td>
<td></td>
</tr>
<tr>
<td>污水</td>
<td>污渣脱滤水、冲洗废水、生物滤池污水等</td>
<td>通过污水管，排入生活垃圾填埋场渗滤液处理站处理</td>
<td>/</td>
<td>依托一期</td>
</tr>
<tr>
<td>废水</td>
<td>雨水沟</td>
<td>4.4</td>
<td>依托一期</td>
<td></td>
</tr>
<tr>
<td>地下水污染防治</td>
<td>厂区采取分区防渗措施，重点污染防治区（包括卸料大厅、接料预处理区、工艺组合水池、厌氧沼液脱水区、油水分离区及贮油罐、厌氧发酵罐区、除臭系统装置区、固废暂存间）采用“环氧树脂膜+抗渗混凝土层+钢性垫层铺砌地坪”进行防渗，渗透系数≤1.0×10^{-10} cm/s；一般污染防治区（包括沼气净化处理区及沼气柜、主控室、空压站、冷却塔、锅炉房、机修间）采用“抗渗混凝土层”进行防渗，渗透系数≤1.0×10^{-7} cm/s</td>
<td>/</td>
<td>依托一期</td>
<td></td>
</tr>
<tr>
<td>噪声</td>
<td>预处理设备</td>
<td>采用低噪声设备、建筑隔声、减振</td>
<td>6.6</td>
<td>依托一期</td>
</tr>
<tr>
<td>噪声</td>
<td>风机、各种泵等</td>
<td>采用低噪声设备、建筑隔声、减振、消声等</td>
<td>/</td>
<td>依托一期</td>
</tr>
<tr>
<td>冷却塔</td>
<td>采用低噪声设备、消声</td>
<td>依据一期</td>
<td></td>
<td></td>
</tr>
<tr>
<td>厂区绿化</td>
<td>种植绿化带及花台</td>
<td>3.6</td>
<td>依托一期</td>
<td></td>
</tr>
<tr>
<td>风险防范</td>
<td>广区分区防渗措施，详见表 8.2-1</td>
<td>/</td>
<td>依托一期</td>
<td></td>
</tr>
<tr>
<td>风险防范</td>
<td>沼液暂存罐周围修建围堰</td>
<td>6</td>
<td>依托一期</td>
<td></td>
</tr>
<tr>
<td>合 计</td>
<td>/</td>
<td>70.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

本项目总投资金额 3500 万元，其中环保投资 70.6 万元，环保投资比 0.02%。
9 环境经济损益分析

9.1 环境保护投资效益分析

9.1.1 项目“三同时”治理设施、投资及运行费用估算

建设项目环保设施必须与主体工程同时建设施工。根据拟采取的环保措施和对策，本工程用于环境保护的费用主要有污水处理设施、废气处理设施、噪声源防治措施费用及固体废物接受、存放、外运等方面。
本项目环保投资共70.6万元，环保投资占项目总投资比例为0.02%。

9.1.2 项目环境保护投资效益分析

建设项目环保措施主要是体现国家有关的环保政策，贯彻“总量控制”、“达标排放”和“清洁生产”的污染控制原则，达到保护环境的最终目的。

拟建项目若不对废气、废水和固体废弃物进行治理。这样将造成大气环境、受纳水体、地下水和农作物受到污染。造成水资源损失。估计年损失（主要是赔偿和超标排污收费）在数百万元以上。企业通过投资70.6万元的环保措施，还有依托一期的环保措施，主要体现在生产过程中工艺废气收集和处理系统、生产废水的收集和预处理系统、清污分流管网、噪声治理措施、固废处置措施、场地防腐和防渗漏措施、事故应急等方面。虽然有一定的投入。但有较好收益。可减少每年的排污交费和每年损失赔偿费等。据分析。本项目的污染治理设备在正常运行的状况下可做到污染物达标排放，这对当地环境和人民群众是一种负责任的态度，在对当地经济建设做出贡献的同时也保护了当地的环境质量。只要企业切实落实本报告提出的各项污染防治措施。使各类污染物均做到达标排放，则该项目的建设和营运对周围环境的影响是可以承受的。能够做到社会效益、环境效益和经济效益三者的统一。

9.2 经济效益分析

项目餐厨废弃物经规范收集运输和综合处置后，对垃圾中的有机物进行厌氧发酵，厌氧发酵产生的沼气脱硫后作为清洁能源使用，预处理产生的粗油脂可作为制备生物柴油的原料。因此，项目的设计可减少生活垃圾的填埋量和减轻环境压力，降低政府投资和财政支出；其次项目沼气作为清洁能源用于生产工艺，
减少了沼气外排导致的温室效应，降低了餐厨废弃物处置的运行成本；沼气外供发电和废油脂净化后制备生物柴油，可为企业带来良好的经济效益。

综上所述，项目建成投产后具有良好的经济效益。

本项目主要经济指标见表

表 9.2-1 主要技术经济指标表

<table>
<thead>
<tr>
<th>序号</th>
<th>指标名称</th>
<th>单位</th>
<th>指标</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>处理规模</td>
<td>t/d</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>地理位置</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>工程项目总投资</td>
<td>万元</td>
<td>3500</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>外购电力合计</td>
<td>万元/年</td>
<td>129.02</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>用水费用</td>
<td>万元</td>
<td>4.54</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>修理费费率</td>
<td>%</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>外排费用</td>
<td>万元/年</td>
<td>516.48</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>沼气收入</td>
<td>万元/年</td>
<td>72.68</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>粗油脂收入</td>
<td>万元/年</td>
<td>429.60</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>垃圾综合收费</td>
<td>万元/年</td>
<td>1103.08</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>财务内部收益率（税后）</td>
<td>%</td>
<td>7.50%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>全部投资回收期（税后）</td>
<td>年</td>
<td>12.69</td>
<td></td>
</tr>
</tbody>
</table>

9.3 社会效益、环境效益分析

本项目通过采用有效的污染防治及生态保护措施，确保各项污染物达标排放，取得了良好的社会效益。

（1）项目餐厨废弃物综合处理具有无害化、资源化等优点，有助于推动促进绵阳市的循环经济发展和节能减排。

（2）项目建设可解决增加周边群众就业机会，增加当地居民收入。

（3）对餐厨垃圾进行规范化收集运输和合理处置，极大的改善市容环境卫生，提升绵阳的城市形象，促进旅游产业和其他第三产业及其它各行业的发展，提高该地区的总体经济水平，促进地方经济的发展。

（4）解决市民关心的食品卫生安全问题和生活环境卫生问题，可以有效提高公众满意度。有地提高城市环境质量，提高人民的健康水平，降低居民的医疗费用。

本项目主要体现环境效益和社会效益，项目本身的经济效益较低，必须通过征收处理费或财政补贴的形式维持运营。鉴于该行业属于新兴环保行业，较之成熟行业有更大风险，为使项目财务上可持续经营，使城市环卫事业实现良性循环，
逐步减少政府补贴，政府尽快研究和落实处理收费标准。

9.4 经济费用效益评价

本项目有很大的间接效益，因而其经济内部收益率必将远远大于财务内部收益率。因此，从经济分析的角度来看，本项目是可行的。

根据以上主要分析指标和项目整体情况看，本项目财务费用效益和经济费用效益均好，项目可行。

综上，本工程实施可以产生一定的社会、经济效益，从而在经济上是合理可行的。

9.5 环境影响经济损益分析

1. 损益分析

本项目施工期主要环境问题是施工废水、废气、噪声、固废及水土流失等，工程运行期中存在的主要环境问题有：①恶臭气体；②污、废水；③设备噪声；

拟建项目若不对废气、废水、噪声进行治理，这样将造成大气环境、地表水体、地下水、声学环境受到污染，估计年损失(主要是赔偿和超标排污收费)在数百万元以上。企业投资一定费用对废气、废水和噪声进行治理，虽然有一定的投入，但有较好收益，可减少每年的排污交费和每年损失赔偿费等。因此，企业对污染源的治理，有较好的环境效益和经济效益。直接经济效益体现在保护地表水、地下水和周围环境上减灾所带来的经济效益，体现在促进城市发展和产生更大的经济效益方面。

2. 项目环保投资取得环保效益的主要体现

（1）项目对餐厨废弃物进行规范收集和综合处理，从源头解决餐厨废弃物作为生活垃圾填埋或焚烧造成的资源浪费和环境污染问题，延长了城市垃圾填埋场的服务年限，节约了大量土地资源。

（2）项目对废气、废水、噪声及固废等均采取了有效的治理及处置措施，从而使污染得到了有效的控制，不仅减少了污染物的排放，也减轻了对区域环境的影响。通过预测结果也可以看出，工程投产后，污染物的排放对环境的不利影响较小。

（3）本项目建成后将在厂内空地及厂区周围种植大量高大乔木和绿色植物，绿化工程的建设可以有效净化环境空气，大大降低扬尘、恶臭、噪声等的影响范围和程度，有利于创造一个优美舒适的工作环境，同时补偿和改善项目区域及周
边生态环境。

总之，本项目是对餐厨废弃物无害化、资源化处理的城市环境保护措施，项目遵循垃圾资源化、减量化、无害化的原则，对餐厨废弃物采取厌氧发酵，副产沼气用于焚烧发电造福于民，粗油脂用于深加工，而且本工程产生的污染物经治理后达标排放，对周围环境影响很小，实现了社会效益、经济效益和环境效益的统一。

综上，项目从环保经济损益角度分析可行。
10 环境管理和检测计划

环境管理是指运用经济、法律、技术、行政、教育等手段使经济发展和环境保护得到协调发展，它是企业管理中的重要环节之一。在企业中，建立健全环保机构，加强环保管理工作，开展厂内环境监测、监督，并把环保工作纳入生产管理，对于减少企业污染物排放，促进资源的合理化利用与回收，提高经济效益和环境效益有着重要意义。

10.1 环境管理机构设置

由于施工期和运营期的环境管理内容有较大差异，且两者工作时限有临时性和长期的区别，因此应分别设立单独的环境管理组织机构，并实行分阶段负责的方式，施工期结束后相应的管理机构即行撤销，运营期管理机构开始运作，根据工作具体情况，可有一定时段的交叉。

1）施工期环境管理机构

施工区仅进行设备的安装，过程很快，安装过程仅有噪声污染，管理人员组织安装轻拿轻放，确保工人安全的前提下做到减轻噪声的产生。

2）运营期的环境管理机构

工程建成投产后设置环保科，并有一名业务副厂长分管。环保科配置环境监测和环境工程、分析化学技术人员，主要担负运营期日常环境监测和环保设施维护。

10.2 环境管理职责

1）施工期

施工期噪声污染很小，管理人员仅需确保工人安全的前提下让工人轻拿轻放做到减轻噪声的产生。

2）运营期

负责指定环保管理制度并监督执行，主要包括：

(1) 宣传、组织贯彻国家有关环境保护主方针、政策、法令和条例，配合当地环保主管部门搞好项目运营过程中的环境保护工作。

(2) 执行上级主管部门建立的环境管理制度；

(3) 开展环保教育、技术培训和学术交流活动，提高工作人员素质，推广利用
先进技术和经验。

10.3 环境管理计划

1）项目施工阶段环境管理方案
本项目施工阶段仅为设备安装，产生的环境污染仅有噪声，且是短暂的，不对其做出管理方案，主要是做出运营期管理方案。

2）项目运营阶段环境管理方案
营运期应定期监测各类主要污染物的排放情况，以确保各类污染物的达标排放，并随时掌握厂区周围环境质量的变化趋势。

（1）“三同时”验收
建设项目竣工后，建设单位应依法向当地环境保护部门申请对项目配套建设的环保治理设施予以竣工验收，然后本工程方可正式投产运行。

（2）建立、执行并监督管理计划，对大气、废水等主要污染物制定详细的监测、制度，以保证及时了解并控制污染物排放情况和对周围环境的影响情况。

（3）明确环境监测的职责，建立健全本站的各项规章制度：根据国家环境标准，本项目重点污染源及污染物开展月常监测工作，编制表格和报表，定期上报有关主管部门，建立监测档案。

10.4 环境监测计划及内容

环境监测是环境管理的依据和基础，它为环境统计和环境总量评价提供科学依据，并据此制定防治对策和规划。项目建设单位可委托当地环境监测机构负责污染源和环境质量的监测任务，具体监测时间、频率、点位服从环保部门的规定和要求。

(1) 运营期监测计划

运营期的监测计划见下表。

<table>
<thead>
<tr>
<th>表 10.4-1 运营期监测计划表</th>
</tr>
</thead>
<tbody>
<tr>
<td>内容</td>
</tr>
<tr>
<td>废气</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>废水</td>
</tr>
</tbody>
</table>
10.5 污染物排放清单及总量指标

10.5.1 污染物排放清单

根据本环评工程分析章节所列的原辅材料组分及工程组成，本项目污染物排放清单见下表。

<table>
<thead>
<tr>
<th>类别</th>
<th>污染物种类</th>
<th>排放浓度（mg/L）</th>
<th>排放量（t/a）</th>
<th>治理措施</th>
<th>执行的排放标准</th>
</tr>
</thead>
<tbody>
<tr>
<td>废水</td>
<td>废水量</td>
<td>/</td>
<td>71091</td>
<td>进入水务集团所属垃圾填埋场渗滤液处理站处理达标后排放</td>
<td>《生活垃圾填埋场污染控制标准》（GB16889-2008）中表2标准</td>
</tr>
<tr>
<td></td>
<td>COD</td>
<td>50</td>
<td>3.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>氨氮</td>
<td>10</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>70</td>
<td>4.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOD₅</td>
<td>7.5</td>
<td>0.533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>废气</td>
<td>H₂S</td>
<td>有组织</td>
<td>0.021</td>
<td>0.011</td>
<td>植物液喷雾处理后经负压收集通过碱洗+生物滤池+光催化氧化组合除臭装备除臭</td>
</tr>
<tr>
<td></td>
<td>无组织</td>
<td>/</td>
<td>0.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NH₃</td>
<td>有组织</td>
<td>0.26</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>无组织</td>
<td>/</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>噪声</td>
<td>工艺噪声</td>
<td>/</td>
<td>/</td>
<td>合理布局、建筑隔声</td>
<td>《工业企业厂界环境噪声排放标准》（GB12348-2008）2类标准限值</td>
</tr>
<tr>
<td>固废</td>
<td>一般固废</td>
<td>/</td>
<td>10800</td>
<td>送至垃圾焚烧发电项目焚烧处置</td>
<td>《危险废物贮存污染控制标准》（GB18597-2001）及修改单、《危险废物收集、贮存、运输技术规范》(HJ2025-2012)、《一般工业固体废物贮存、处置场污染控制标准》(HJ25.1-2012）</td>
</tr>
<tr>
<td></td>
<td>预处理废渣</td>
<td>/</td>
<td>10800</td>
<td>送至垃圾焚烧发电项目焚烧处置</td>
<td></td>
</tr>
<tr>
<td></td>
<td>废脱硫剂</td>
<td>/</td>
<td>6</td>
<td>定期由供货厂家回收</td>
<td></td>
</tr>
<tr>
<td></td>
<td>废油脂</td>
<td>/</td>
<td>2000</td>
<td>外销</td>
<td></td>
</tr>
<tr>
<td>厌氧发酵系统产生的沼渣</td>
<td>/</td>
<td>5760</td>
<td>送污泥干化项目干化后由垃圾焚烧项目焚烧</td>
<td></td>
<td></td>
</tr>
<tr>
<td>危废</td>
<td>废润滑油</td>
<td>/</td>
<td>0.032</td>
<td>项目检修由外包公司</td>
<td></td>
</tr>
</tbody>
</table>
10.5.2 总量控制因子及指标

根据本报告对全厂污染物排放量计算结果的统计，本项目实际排放量较达标排放量低，为使项目更好的符合当前国家大力推行的节能减排政策的要求，总量控制建议指标见下表

<table>
<thead>
<tr>
<th>类别</th>
<th>污染物名称</th>
<th>评价建议总量控制指标</th>
</tr>
</thead>
<tbody>
<tr>
<td>废水</td>
<td>COD</td>
<td>3.55</td>
</tr>
<tr>
<td></td>
<td>NH₃-N</td>
<td>0.71</td>
</tr>
</tbody>
</table>

本项目废水排入垃圾填埋场渗滤液处理站处理，废水总量计入垃圾填埋场渗滤液处理站，本项目不设总量控制指标。

10.6 “三本账”分析

<table>
<thead>
<tr>
<th>污染种类</th>
<th>污染物</th>
<th>扩建前全厂排放量 (t/a)</th>
<th>扩建项目新增排放量 (t/a)</th>
<th>扩建项目以新带老削减量 (t/a)</th>
<th>扩建后全厂排放量 (t/a)</th>
<th>排放增减量 (t/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>废水</td>
<td>COD</td>
<td>2.28</td>
<td>1.27</td>
<td>0</td>
<td>3.55</td>
<td>+1.27</td>
</tr>
<tr>
<td></td>
<td>NH₃-N</td>
<td>0.46</td>
<td>0.25</td>
<td>0</td>
<td>0.71</td>
<td>+0.25</td>
</tr>
<tr>
<td>废气</td>
<td>H₂S</td>
<td>0.044</td>
<td>0.006</td>
<td>0.011</td>
<td>0.011</td>
<td>-0.033</td>
</tr>
<tr>
<td></td>
<td>NH₃</td>
<td>0.07</td>
<td>0.07</td>
<td>0</td>
<td>0.14</td>
<td>+0.07</td>
</tr>
<tr>
<td>固废</td>
<td>一般固废</td>
<td>6352</td>
<td>6448</td>
<td>0</td>
<td>12800</td>
<td>+6448</td>
</tr>
<tr>
<td></td>
<td>危废</td>
<td>0.018</td>
<td>0.018</td>
<td>0</td>
<td>0.036</td>
<td>+0.018</td>
</tr>
</tbody>
</table>
11 结论

11.1 环境影响评价结论

11.1.1 项目建设与产业政策的符合性

根据2020年1月1日国家发改委第29号令《产业结构调整指导目录（2019年本）》，第一类鼓励类中第四十三条“环境保护与资源节约综合利用”中的第34款“餐厨废弃物资源化利用技术开发及设施建设”的投资项目建设，本项目属国家当前鼓励建设的项目。

由此可见，本工程建设符合现行国家产业政策及相关规定。

11.1.2 项目选址与当地规划的符合性

通过对城市总体规划、相关旅游发展规划等规划的适宜性分析，结合在全绵阳市范围内可选建设地点选址的经济论证以及场地建设条件的分析，绵阳市餐厨废弃物资源化利用和无害化处理项目最终拟选定在现绵阳市生活垃圾填埋场红线上范围内（绵阳市玉皇镇、梁村八社）建设。绵阳市涪城区人民政府出具规划承诺：“控制玉皇镇的发展规模，调整现镇区东面的绵中公路东侧预留区域规划，限制该预留区域的用地性质，不建设商住、教育、卫生、食品医药等环境敏感项目。”（绵涪府函【2014】76号）。

对于本项目拟选厂址，绵阳市城乡规划局出具了《建设项目选址意见书》选字第（2015）19号，同意本项目选址位置。

该选址为绵阳市现有的环境卫生设施用地，符合绵阳市城市总体规划和环境卫生规划。

本项目厂址：不在绵阳市、涪城区等城市建成区内、不在环境质量不能达到要求且无有效削减措施的区域、不在可能造成敏感区域环境保护目标不能达到相应标准要求的区域；有足够的用地面积，无动迁，不占耕地；本项目拟选址与周边最近住户距离大于550m（与玉皇镇最近距离710m）。符合《餐厨垃圾处理技术规范》（CJJ184-2012）选址的相关要求。
由于本项目拟选厂址在现已建成的绵阳市生活垃圾填埋场已征地红线范围内分割一部分土地进行建设，具有如下的有利条件：① 不新征土地、不改变用地性质（保持了现有的生活垃圾处理用地特性）、不涉及绵阳市总体规划和环卫规划布局调整。② 原垃圾填埋场红线范围内已完成了护坡、截洪沟等基础建设，施工扰动面积较小；污水处理设施可以协同共享，处理残渣、生活垃圾就近送垃圾焚烧发电项目处置。③ 可充分利用现有填埋场的收运系统和运输路线等，不会改变和新增运输路线周边的环境影响。④ 本项目无建设移民搬迁，原填埋场周边 500m 卫生防护距离范围内已完成环保搬迁现无住户居住，也不会新增环保搬迁。

由此可见，本项目选址与当地规划相容。

11.1.3 与“三线一单”控制要求的相符性分析

本项目选址不在生态保护红线内、未超出环境质量底线及资源利用上线、未列入环境准入负面清单内。本项目的建设与生态环境部发布的《关于以改善环境质量为核心加强环境影响评价管理的通知》中“三线一单”的要求相符。

11.1.3 工程所在区域环境质量现状

1. 大气环境质量现状

监测结果表明，评价区各监测点 PM_{10}、PM_{2.5}、SO_{2}、NO_{2} 监测值均满足《环境空气质量标准》（GB3095-2012）中二级标准要求；NH_{3}、H_{2}S 监测浓度均满足《工业企业设计卫生标准》（TJ36-79）居住区大气中有害物质的最高容许浓度要求；恶臭未检出。

4. 地表水环境质量现状

地表水监测及评价结果分析表明：COD、BOD、氨氮、总磷所有断面均有超标，DO 的 I 号和 IV 号断面超标，其余监测断面的各监测指标均符合《地表水环境质量标准》(GB3838-2002)III类标准限值。超标原因主要为巩家沟和庞家堰水量较小，并成为附近的纳污河流，农田灌溉排水和农民生活废水未经处理排入这两条河流，导致水质出现超标现象。

本项目建成后，废水送至垃圾填埋场处理达标后排入进入下游巩家沟，不会
加重污染。

5. 声环境质量现状

本项目厂界声环境质量可达到《声环境质量标准》（GB3096-2008）2类标准。

6. 地下水环境质量现状

根据监测数据结果表明，该区域地下水6个监测点各监测因子均达到《地下水质量标准》（GB/T14848-2017）Ⅲ类水质标准。

7. 土壤环境质量现状

本项目所在地的表层土壤质量良好，土壤中重金属铜、锌、铅、镉、汞、铬、镍均满足《土壤环境质量标准 建设用地土壤污染风险管控标准（试行）》（GB36600-2018）第二类用地标准要求。

11.1.4 工程污染物排放治理及环境影响

1. 污染物排放及治理措施

（1）废气

本项目废气主要为餐厨废弃物处理环节产生的恶臭气体，其主要来自综合处理车间内分拣机、压滤机、输送机等设备处，以及卸料大厅、均质池和污泥脱水等作业区，恶臭气体的主要成分为H2S 和NH3，此外还有少量的甲胺、甲基硫等，这些气体挥发性较大，易扩散在大气中，而且部分气体有毒、刺激性气味。针对恶臭气体，项目采取“植物液喷雾+负压收集+碱洗+生物滴滤池+光催化氧化”除臭方式，废气经处理达《恶臭污染物排放标准》（GB14554-93）二级标准后通过15m排气筒排放，对环境不会造成明显影响。

（2）废水

本项目废水主要为厌氧发酵沼液脱水产生的废水以及车间冲洗废水等，项目废水汇合后统一排入垃圾填埋场渗滤液处理站一并进行处理，处理达标后排入下游巩家沟。

（3）噪声

本项目的主要设备噪声源包括分拣机、破碎筛分机、输送机、冷却塔及各类辅助设备如泵、风机等产生的动力机械噪声，声源强度在75～90dB(A)范围内。
噪声采用消声、吸声、隔声等治理措施后，厂界噪声可达标。

(4) 固体废物

本项目固体废弃物主要包括餐厨废弃物处理工艺中分拣环节产生的木塑杂物、筛分沉砂环节产生的固相物、压滤产生的滤渣、三相分离产生的废渣、厌氧发酵最后产生的沼渣、废脱硫剂、油水分离产生的粗油脂等。处置方式如下:
1. 综合处理车间产生的废渣（包括分拣粗杂、破碎筛分细杂、沉砂砂砾、压滤产生的滤渣及三相分离产生的废渣），定期送垃圾焚烧发电项目焚烧处置。
2. 沼气脱硫产生的废脱硫剂，定期由供货厂家回收。
3. 油脂外销。
4. 厌氧发酵系统产生的沼渣，脱水后送垃圾焚烧项目焚烧处置。
5. 生活垃圾定期送垃圾焚烧发电项目焚烧处置。

2. 工程对环境的影响

(1) 对大气环境的影响

① 区域主导风向不明显。NE 向风频最大为 9.56%，平均风速最大，对 NE 下风向的玉皇镇的影响概率很小(<10%)，影响程度也小。

②项目恶臭废气对地面小时平均浓度的最大贡献值较小，不会出现超标现象。

③项目恶臭废气对最近保护目标处的贡献值较小，满足相应执行标准的限值要求，对相关敏感点无明显影响。

④废气非正常排放时，污染物源强明显增大，浓度贡献值均有不同程度增加，污染预测因子可满足相应标准要求。

⑤本项目在玉皇垃圾填埋场用地范围内建设，垃圾填埋场已设置了 500m 的卫生防护距离，故本项目不再单独设置卫生防护距离。

综上，项目运营期恶臭气体经净化处理后达标排放，对区域大气环境影响较小。

(2) 对水环境的影响

地表水环境: 项目废水统一排入垃圾焚烧渗滤液处理站处理达标后排入下游巩家沟，不会加重污染。

地下水环境: 污染物正常排放情况下，严格按照环保要求进行防渗后，各地下水污染防治区产生的污染物下渗进入地下水系统的量较小，对区域地下水环境
影响小。在正常工况下，通过采取合理有效的地下水污染防治措施，污染物在地下水系统中经过稀释、吸附及降解等作用，对地下水环境影响较小。

（3）对声环境的影响

本项目投产后，按要求对噪声进行治理，并通过加强管理，对声环境不会造成明显影响。

（4）固体废弃物对环境的影响

本项目产生的固体废弃物不在厂区长期存放，预处理废渣等直接清运至焚烧项目焚烧，废含油手套等都交由外包单位回收，不会对环境造成污染影响。

11.1.5 清洁生产

本项目符合垃圾处置无害化、减量化、资源化的原则。生产过程采用清洁能源、先进生产设备和控制技术、有效可行的废水处理技术，同时采用先进的管理模式，有效地减少了水耗、能耗和污染物排放量。项目建成后，清洁生产各主要指标均处于国内先进水平。

11.2 总结论

绵阳中科绵投环境服务有限公司绵阳市餐厨废弃物资源化利用和无害化处理二期项目选址合理，符合绵阳市的规划要求，项目建设符合国家和地方产业政策；生产过程采用清洁的生产工艺，所采用的污染防治措施技术、经济可行；各种污染物能够实现稳定达标排放，污染物总量能够在区域内平衡，在正常情况下项目排放的污染物对周边环境影响较小；项目的实施将带来正面的社会效益和环境效益，有助于实现废物资源化。因此，评价认为在落实各项污染防治措施、严格执行“三同时”的前提下，从环保角度分析，本项目的建设可行。

11.3 建议

环评单位针对本项目特点，提出以下措施和要求，建议建设单位和相关部门在项目实施过程中要严格执行：

（1）拟建项目在设计和建设过程中要高水平设计、高标准建设、高质量运行、高标准管理，与设计单位充分沟通，最大限度减排。

（2）提高严格控制工艺参数，降低原料消耗，减少污染物的排放量。

（3）加强恶臭气体处理技术的调研比选，采用高效、稳定、可靠的处理技术和设备，严格控制恶臭污染物的排放。
(4) 生产过程中贯彻循环经济的理念，加强生产管理和环境管理，按照《中华人民共和国清洁生产促进法》中的相关要求，组织实施清洁生产审核。

(5) 对厂内主要设施采取预防性/计划性维修维护措施，如制定设维护维修时间安排表或进程表，定期对生产设备进行维护和保养，以保证设备正常工作，每天进行巡查，防止非正常工况下对环境产生不利影响。

(6) 加强员工培训，贯彻清洁生产理念，建立奖励措施，调动职工为进一步清洁生产献计献策。